

ATE

Киральная катастрофа модели Бака-Йенсена в Fe_{1-x}Co_xGe

С.В. Григорьев Петербургский институт ядерной физики НИЦ Курчатовский институт

Зимняя школа ФКС-2014, 10-15 марта 2014

Crystal structure

Examples MnSi, FeSi, CoSi Mn_{1-y}Fe_ySi, Mn_{1-y}Co_ySi, Fe_{1-x}Co_xSi

MnGe, FeGe, CoGe $Mn_{1-y}Fe_yGe$, $Fe_{1-y}Co_yGe$, $Mn_{1-y}Co_yGe$

Bòren, 1933

- B20-type cubic
- Space group $P2_13$, $a \approx 4.6 \text{ Å}$
- 4 Me and 4 Si <u>atoms</u> are inside a unit cell

 $with u_{Mn} = 0.138 \text{ and } u_{Si} = 0.845$

What is structural chirality?

(u,u,u), (1/2+u,1/2-u,u), (u,u,u), (1/2+u,1/2-u,u), (1/2-u,-u,1/2+u) (-u,1/2+u,1/2+u) (-u,1/2+u,1/2+u) with

1. H-T and T-P phase diagrams

[1] Y. Ishikawa, G. Shirane, J.A. Tarvin, M. Kohgi, Phys.Rev.B **16** (1977) 4956.

$$W(q) = E_{EX} + E_{DM} + E_{AE} =$$

= (A/2) (q² + κ_0^2) S_q^2 +
+ D (q [$S_q \times S_{-q}$]) + E_{AE}
 \downarrow
k = SD/A

Driving forces in magnetic system of Masi

k-dependent part of the classical energy [P.Bak, M.H.Jensen, J.Phys. C13 (1980)

 $E_{cl} = -(S^2/2) J_k \cos^2 \alpha - S^2 D_k (\mathbf{k} [\mathbf{a} \times \mathbf{b}]) \cos^2 \alpha +$ + $(S^{2}F/4)[k_{x}^{2}(a_{x}^{2}+b_{x}^{2})+k_{y}^{2}(a_{y}^{2}+b_{y}^{2})+k_{z}^{2}(a_{z}^{2}+b_{z}^{2})]\cos^{2}\alpha + Sh_{\parallel}\sin\alpha$ At $(ka \ll 1)$: $J_k \approx J_0 - Ak^2/S$ and $D_k \approx D_0$. c, \mathbf{k} Hierarchy of interactions: A >> D a >> F $E_{cl} = - (S^2/2) J_0 \cos^2 \alpha + S h_{\parallel} \sin \alpha +$ + $[S A k^2/2 + (S^2 F k^2/4)\Sigma c_i^2 (a_i^2 + b_i^2) - S^2 D_0 (k [a \times b])] \cos^2 \alpha$ For components of **k**: SA $k_i + (S^2 F k_i/2)\Sigma c_i^2 (a_i^2 + b_i^2) = S^2 D_0 [\mathbf{a} \times \mathbf{b}]_i$ $S A k^{2} + (S^{2} F k^{2}/2)\Sigma c_{i}^{2} (a_{i}^{2} + b_{i}^{2}) = S^{2}D_{0} (k [a \times b])$ **F**or **k**:

Driving forces in magnetic system of Masi

Bak-Jensen model:

 $\mathbf{k} = S^2 D_0 [\mathbf{a} \times \mathbf{b}] / \{S A + (S^2 F/2) \Sigma c_i^2 (a_i^2 + b_i^2) \}$

(i) $\mathbf{k} \perp [\mathbf{a} \times \mathbf{b}]$

(ii) $k = SD_0 / \{A + (SF/3)\} \approx SD_0 / A$

(iii) if $D_0 < 0$ then left-handed spiral & if $D_0 > 0$ then right-handed spiral

(iv) Direction of **k** is not fixed by the Dzialoshinskii interaction. It is the anisotropic exchange $(S^2 F/2) \Sigma c_i^2 (a_i^2 + b_i^2)$, which does !!!

Driving forces in magnetic system of M

Substitute $\mathbf{k} = S^2 D_0 [\mathbf{a} \times \mathbf{b}] / \{SA + (S^2 F/2)\Sigma c_i^2 (a_i^2 + b_i^2)\}$ into

 $E_{cl} = [S A k^2/2 + (S^2 F k^2/4)\Sigma c_i^2 (a_i^2 + b_i^2) - S^2 D_0 (k [a \times b])] \cos^2 \alpha$

 $\Sigma c_i^2 (a_i^2 + b_i^2)$ is maximal and equal to 2/3 at $(\mathbf{k} \parallel \mathbf{c} \parallel [111])$ and is minimal and equal to 0 at $(\mathbf{k} \parallel \mathbf{c} \parallel [100])$

If F < 0, then E_{cl} is minimized at $(\mathbf{k} \parallel \mathbf{c} \parallel [111])$; If F > 0, then E_{cl} is minimized at $(\mathbf{k} \parallel \mathbf{c} \parallel [100])$.

Magnetic order in Fe_{1-x}Co_xSi and Mn_{1-y}Fe_ySi

Фазовая диаграмма MnSi в магнитном поле

S.V. Grigoriev, S.V. Maleyev, A korokov, Yu. O. Chetverikov, P. Böni, R. Georgii, D. Lamago, H. Eckerlebe and K. **Pray**zas, Phys.Rev. B, v.74, (2006) 214414 60 50 H 40 H_{c} (mT) 30 20 10 10 15 20 25 30 0 5 T (K) 1) A = g μ_B H_{C2}/ k = 50 meV A² 2) S Da = A ka= 8 meV A^2 3) $\Delta^2 = H_{in}^2/2 \approx (11 \ \mu eV)^2$

- 1) A $k^2 = g \mu_B H_{C2}$ критическое поля перехода в ферромагнитную фазу
- 2) k = S D/ А волновой вектор спирали

Константа Дзялошинского- сколько это для кристаллов этого типа P2₁3 ?

Critical temperature T_C in $Mn_{1-x}Fe_xGe$

Maps of small angle neutron scattering intensity at low temperatures T \approx 10 K.

Additional experimental proof

arXiv.org > cond-mat > arXiv:1302.2319 NATURE NANOTECHNOLOGY

Skyrmions with varying size and helicity in composition-spread helimagnetic alloys $Mn_{1-x}Fe_xGe$

<u>K. Shibata, X. Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S.</u>

<u>Ishiwata, Y. Matsui, Y. Tokura</u>

Composition x	Domain	$\Gamma_{\mathbf{c}}$	$\gamma_{ m m}$	$\Gamma_{\rm c} imes \gamma_{\rm m}$
~ 0.5	А	+	+	+
~ 0.5	В	—	_	+
~ 0.7	А	_	_	+
~ 0.9	А	+	_	_
~ 0.9	В	_	+	_
1.0	А	+	_	_
1.0	В	_	+	_

Lorentz transmission electron microscopy

Lorentz transmission electron microscopy

Results

0.00

0

50

100

 $H(\mathbf{T})$

0.5

0.005 O.(A

1.0

T (K)

200

250

300

150

0.0

0.0

Fe_{1-y}Co_yGe (0,0.1... -.. 1.0) (A.V. Tsvyashchenko, Institute for High Pressure Physics, Troitsk, Russia)

Susceptibility measurements

The wavevector k = 0, T_c = 140 K!!! The system transforms to ferromagnet as well !

Driving interactions of t magnetic system

Выводы

- Рост Ј при х → х_с противоречит плавному уменьшению Т_с в этих кристаллах. Что происходит с J?
- Константа Дзялошинского остается константой во всем диапазоне концентраций х, но меняет знак при х = х_с. При этом она равна этой же величине в MnSi и Fe_{1-x}Co_xSi.

Москвая Багений Бладамировач, к.ф.-м.н., старший научный сотрудная, ПИЯФ НИЦ КИ, Гагчина

Далькин Валим Александрович, к.ф.-м.н., научный сотрудник, ПИЯ НИЦ КИ, Гагчана

Алтынбаса Евгений Владнанровастудент, СПБГУ

Дарк Мекзель. gogrop, Technische Universitaet Braunschweig, Германия.

Коллектив авторов этой работы выражает благодарность всем тем людям, которые поддерживают их в экспериментах, обсуждают результаты, комментируют и критикуют.

Чубова Надежда Мяхайловна, мпадшай заучный сотрудная, ШИЯФ НИЦКИ, Гагчина

Чернышов Дмитрий Юрьевич, Цвященко Анатопий Васяльскич, к.ф.-м.н., изучный сотрудник, SNBL к.ф.-м.н., старший научный. ESRF, Грекобль, Франция сотрудных, ИФВД РАН, Тровще

Свен Арне Зигфенц.

acuspasr, Helmholtz-Zentrum

