

Анализ структуры магнитной жидкости методом анизотропного малоуглового рассеяния

Д.И. Фрей¹, А.А. Велигжанин^{1,2}, А.А. Чернышов², Я.В. Зубавичус^{1,2}, Е.В. Яковенко² и М.В. Авдеев³.

1. Московский физико-технический институт, 141700, Институтский пер., Долгопрудный, Россия 2. НИЦ Курчатовский Институт, 123182, пл.Курчатова 1, Москва, Россия

3. Объединенный институт ядерных исследований, 141980, Московская область, Дубна, Россия

Актуальность

- Взаимодействие магнитных частиц определяет микроструктуру магнитных жидкостей и влияет на их макроскопические свойства.
- Метод малоуглового рентгеновского рассеяния (МУРР) традиционно • применяется для исследования структуры подобных систем.
- Внешнее магнитное поле усиливает взаимодействие частиц, а также позволяет частично снять усреднение по ориентациям и повысить информативность малоугловых данных.

Экспериментальная установка

- Станция «ДИКСИ» Курчатовского источника синхротронного излучения
- Особенности
 - 2D детектор Marccd165
 - Электромагнит до 0.4 Тл
 - Длина волны $\lambda = 1.6$ Å \rightarrow Концентрации <5% из-за поглощения

$I(q_{\perp}) = P_{eff}(q) \cdot S_{eff}^{\perp}(q) \approx P_{eff}(q)$

Анизотропия картин МУРР

В сильном поле: q_{\parallel} q_{\perp}

∞ Эффективный структурный фактор → межчастичное расстояние

Размер и дисперсность частиц

 $S_{eff}^{\parallel}(q) \approx I(q_{\parallel}) / I(q_{\perp})$

 $I(q_{\parallel}) = P_{eff}(q) \cdot S_{eff}^{\parallel}(q)$

Полученные структурные параметры

	Co 0.5%	Co 3%	Fe ₃ O ₄ 1.5%	Fe ₃ O ₄ 5%
Средний Ø, нм	14.2	14.8	5.4	5.0
Дисперсность, %	25	22	44	45
Межчастичное расстояние, нм	28	26	-	24
Длина когерентности	90	112	-	38

Моделирование малоуглового рассеяния

Рассеяние на отдельных частицах

– Частицы в феррожидкости считаются шариками с форм-фактором

 $F(q,R) = \Delta \rho \cdot V \cdot \left(3 \frac{\sin qR - qR\cos qR}{(qR)^3}\right)$ – Учтено распределение частиц по размерам

 $D_N(R)$

– Интенсивность рассеяния отдельными частицами:

$$I_{spheres}(\vec{q}) = \int_{0}^{\infty} F^{2}(\vec{q}, R) \cdot D_{N}(R) dR$$

Результаты моделирования (поиск по сетке значений)

Параметры цепочек	Fe ₃ O ₄	Со
Средний радиус частиц, нм	5.2	7.1
Дисперсность	45%	24%
Среднее число частиц	1.6	5
Расстояние между частицами, нм	1.0	6.2
Доля частиц в цепочках	24%	8%
Минимальный радиус частиц в цепочках, нм	6.5	9.6
Магнитное поле, мТл	160	160
Температура, К	300	300
Магнитный момент единицы объема	6.5μ _B	13.5μ _B

Рассеяние на цепочках магнитных частиц

- Используется приближение локальной монодисперсности, считается, что цепочку образуют частицы одного размера. Структурный фактор цепочки:
- Считается, что из-за большего магнитного момента в цепочки объединяются только крупные частицы (начиная с некоторого размера R_c).
- Длина цепочек различна, число частиц в них распределено по Пуассону.
- Расстояние между частицами в цепочке определяется удвоенной толщиной оболочки d, не зависящей от размера частицы: L=2R+d

– Магнитный момент цепочки определяется ее общим объемом, исходя из постоянной плотности магнитного момента в материале магнитных частиц, с усреднением по ориентациям и учетом распределения частиц по размерам.

– Интенсивность рассеяния цепочками частиц:

$$I_{chains}(\vec{q}) = \sum_{k=1}^{k_{max}} \int_{0}^{\infty} F^{2}(q,R) \cdot \left| S_{k}(\vec{q},R) \right|^{2} \cdot p(k) \cdot D_{N}(R) dR$$

Одномерные срезы интенсивности

Двумерные картины МУРР

 $\left|S_{chain}(ec{q})
ight|^{2}$

Выводы

- Методом малоуглового рассеяния наблюдается процесс упорядочения цепочек магнитных частиц под действием внешнего магнитного поля.
- По данным МУРР определены структурные параметры системы, такие как средний размер, дисперсность и межчастичное расстояние в цепочке.
- Написана программа, позволяющая моделировать малоугловое рассеяние от цепочек магнитных частиц в магнитном поле в приближении локальной монодисперсности.
 - Для двух различных типов магнитных жидкостей проведен расчет малоуглового рассеяния. Получены значения параметров системы, при которых наблюдается качественное совпадения расчета с экспериментом.

Исследование проведено при финансовой поддержке фонда РФФИ, грант №12-02-12063-офи-м