Альтернатива He-3: детекторы нейтронов на основе новых стеклокомпозитных сцинтилляторов

Г. А. Досовицкий, М. В. Коржик, А. Е. Досовицкий

Школа ФКС-2014, 11.03.2014

Применения нейтронных детекторов

Известные применения

Исследования

Обнаружение делящихся веществ

http://energy.cr.usgs.gov/ OF00-200/WELLS/LISBURN1/ LAS/LI1LOG.JPG

Перспективные применения

- Контроль работы ядерного реактора
- Экологический мониторинг
- Инженерная диагностика
- Ядерная (нейтронная) медицина

© Joshua Doubek, from http://en.wikipedia.org/ wiki/File:Wireline_Truck.JPG

2/30

Как детектировать нейтрон?

Для регистрации необходимо «превратить» нейтрон в заряженную частицу:

³He + n \rightarrow p + ³H⁺ ⁶Li +n $\rightarrow \alpha$ + ³H⁺ ¹⁰B + n $\rightarrow \alpha$ + ⁷Li³⁺ + γ ²³⁵U+n \rightarrow деление

Выбор детектора тепловых нейтронов

Механизм сцинтилляции

Преимущества сцинтилляционных детекторов

Альтернативные детекторы	Недостатки
Полупроводниковый детектор	 - Высокая стоимость больших объемов - Низкая тормозная способность - Хрупкий материал
Газовый счетчик	- Низкая тормозная способность

Требования к сцинтилляторам для регистрации нейтронов

Поглощающая способность	Низкая для ү-квантов, высокая для нейтронов с E<1 эВ поглощение ~100 % на 3-5 мм толщины					
Световыход	>5'000 фотонов/нейтрон					
Оптическая прозрачность	Обязательна					
Максимум испускания	Согласующийся с чувствительностью фотодиодов и фотоэлектронных умножителей (400-600 нм)					
Послесвечение	Менее 100 ppm через 1 мс после прекращения облучения					
Кинетика сцинтилляции	< 100 нс					
Радиационная стойкость	Средняя или высокая					
Прочие требования	 - Низкое самопоглощение (возможность изготовления детекторов с большим чувствительным объемом) - Температурная стабильность световыхода 					

Выбор состава сцинтиллятора

Классические монокристаллы:

Nal:Tl LaBr₃:Ce PbWO₄ $Bi_4Ge_3O_{12}$ $Y_3Al_5O_{12}$:Ce Lu₂SiO₅:Ce

- тяжелые
- форма
- состав

Для эффективного разделения **n / ү** нужна легкая матрица

		1.000		ГРУППЫ							
териоды	ряды	А І В	AII B	A III B	A IV B	AV в	AVI B	AVII B	A	VIII	в
1	1	H 1,0079 1a' 1 Beasopea						н	He 100260		
2	2	Li 6.941	Be 9,01218	B 10.81 28 ² 20' 3 50p	C 6 12011 25 ² 25 ² Yraepon 2	N 14.0057 28 ³ 29 ³ Азит	O 15994 29 ² 20 ⁴ Кискорол	F 18,9984 28*2µ* 2 Фтор	Ne 20179 20/20'		
3	3	Na 11 Na 11,9898	Mg 24,305	Al 25,9815 36'36'	Si 28,0855 28 ² 28 ²	P 15 50,97,98 34'34' Ponter	S 32.06 8 32.06 8 30 ² 20 ⁴ Crea	Cl 35,453 7 34 ³ 29 ⁵ Xuug	Ar 59.948 36'30'		

Керамика как материал для детектора нейтронов

Твердый неметаллический материал, полученный спеканием порошков

YAG:Ce

Fraunhofer IKTS

http://www.ikts.fraunhofer.de/en/research_fields/ materials/percusorkeramik/leuchtstoffe.html

GYGAG:Ce

Laurence Livermore National Lab

http://spie.org/x42241.xml

+ Может включать ¹⁵⁷Gd

- тяжелая

n + ⁶Li → ³H (2,75 MeV) + ⁴He (2,05 MeV)

За счет большой длины свободного пробега тритона в материале повышается выход сцинтилляций на нейтрон

Выбор состава сцинтиллятора

Монокристаллы:

LiCaAlF₆:Ce³⁺ – цена, ограниченный размер

Cs₂LiYCl₆:Ce³⁺ – цена, ограниченный размер, гигроскопичный

http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0% B9%D0%BB:Chohralsky_Silicon_Crystal_Growth.jpg Автор: Qwazzy

Lil:Eu²⁺ — ограниченный размер, гигроскопичный, n/γ (ρ = 4,1)

Композиты:

ZnS:Ag/⁶LiF - непрозрачный, n/ү

```
Пластики с наполнителем - непрозрачный, n/ү
(<sup>6</sup>Li или <sup>10</sup>B)
```

Single crystal Vs glass scintillators

Стеклокомпозитный сцинтиллятор – совмещение преимуществ стекла и кристалла

Прямолинейный подход

Смешение нанопорошка YAG:Се с Li/В – содержащим стеклом

Порошок YAG:Ce

M.V. Korjik, G.A. Dosovitskiy NSS/MIC 2010, Knoxville

Photoluminescence, Excitation 350 nm

Получение композита кристаллизацией стекла

Классическая технология ситаллов

+ Технология производства
 близка к стекольной

Получение композита кристаллизацией стекла

Классическая технология ситаллов

Нежелательные явления:

- Крупные частицы
- Посторонние фазы

Основные стадии технологического процесса

Стеклообразующая система $Li_2O-Al_2O_3-SiO_2$ (LAS)

Стеклокерамика LAS – варочные панели, самое массовое применение

А кроме того – электролиты для Li-ионных аккумуляторов

> **GS20** – коммерческое nчувствительное стекло в системе LAS (AST, SG)

Li

Правильные условия получения – прозрачный материал

Перегрев ведет к опалесценции или кристаллизации

Кристаллизация стекла

Микрокристаллические включения

Перегрев ведет к образованию включений >1 мкм и опалесценции

Аморфный образец

Нанокристаллиты

Сцинтилляционные характеристики

Константа затухания – ~70 нс (γ-сцинтилляция)

Максимум испускания – ~430 нм (Фотолюминесценция)

Сцинтилляционные характеристики

Амплитудный спектр, источники: ¹³⁷Cs (ү-излучение) и ²⁴¹Am-Be (тепловые нейтроны)

Сравнение со сцинтилляционным стеклом

Температурная стабильность

α излучение от источника Pu-238 считывание ФЭУ

Эффективность поглощения нейтронов

Распределение поглощения нейтронов по толщине (моделирование на GEANT4)

Размер и форма сцинтилляционных элементов

Пластины

Оптоволокно

Опробовано:

Были изготовлены образцы площадью 1-10 см² При необходимости можно увеличить площадь образцов

Детекторы на основе Si-ФЭУ

Кривая спектральной чувствительности Si-ФЭУ

Размер единичного Si-ФЭУ - от 3х3 мм²

Амплитудный спектр, детектор СКС + Si-ФЭУ источник ²⁴¹Аm-Be

Подведение итогов

- Твердые сцинтилляторы могут быть заменой ³Не для регистрации тепловых нейтронов
- Материалы на основе ⁶Li имеют важные преимущества перед более тяжелыми изотопами
- Стеклокомпозитные сцинтилляторы могут быть успешным совмещением преимуществ стекол и монокристаллов
- Есть наработки материалов этого класса с многообещающими характеристиками

Спасибо за внимание!

Продолжить общение можно у постера Секция 3, Четверг 13 марта

31/30

	Q (MeV)	σ _{nA} (barn)
³ He	0,764	5330
⁶ Li	4,780	940
¹⁰ B	2,792	3840
¹⁵⁷ Gd	γ	255000
²³⁵ U	210	582

33/30

Classic scintillators

	PWO	BGO	BSO	YAG:Ce	LuAG:Ce	YAP:Ce	YAP:Pr	Lu ₂ Si ₂ O ₇ :Ce	Lu ₂ SiO ₅ :Ce
LY, ph/MeV	100	8200	1200	11 000	14 000	16 200	7050	30 000	27 000
$ au_{sc}$, ns	6	300	100	70	100	30	13.3	30	40
λ _{мax} , nm	420	505	480	550	520	347	260, 295	380	420
ρ , g/cm ³	8.28	7.13	7.12	4.55	6.7	5.35	5.35	6.23	7.4
$\mathbf{Z}_{\mathrm{eff}}$	75.6	75.2	74.4	32.6	62.9	32	32	64.4	66