

UNIVERSITÄT D U I S B U R G E S S E N

Квантовохимическое моделирование допированных нанотрубок из диоксида титана, используемых для фотокаталитического расщепления воды <u>Д. Бочаров^{1,2,*}, С. Пискунов¹, О. Лисовский¹, Ю. Казеровский¹,</u> Е. Беген¹, Ю.Ф. Жуковский¹, Э. Шпор³

¹ Институт физики твёрдого тела Латвийского университета, Рига ²Институт транспорта и связи, Рига

³Отдел теоретической химии, Университет Дуйсбурга-Эссена *e-mail: bocharov@latnet.lv

(n,n)

Мотивация

Диоксид титана является перспективным материалом для водородной энергетики, благодаря таким их свойствам, как коррозийная устойчивость и ширина запрещённой зоны (~3 eV), которая делает его пригодным для фотокаталитического расщепления воды под воздействием солнечного света [1, 2]. Использование нанотрубок, в свою очередь, позволяет увеличить площадь поверхности материала, тем самым улучшив его фотокаталитические свойства [2].

Тем не менее беспримесные нанотрубки восприимчивы лишь к ультрафиолетовому излучению, на которое в солнечном спектре приходится менее 5% излучаемой энергии [3]. Чтобы повысить эффективность фотокатализа данные материалы допируют различными атомами или группами атомов, с помощью которых индуцируются дополнительные примесные уровни в запрещённой зоне, благодаря чему фотокатализ может происходить не только под воздействием ультрафиолетового излучения, но и под воздействием излучения видимого диапазона [2, 3]. Основной целью представленной работы является построение модели недопированных нанотрубок диоксида титана с различной морфологией, исследование их энергетических параметров, оценка стабильности разных конфигураций нанотрубок путём анализа энергий скручивания и формирования нанотрубок из различных начальных двухмерных структур, а также рассмотрение влияния примесных атомов на ширину запрещённой зоны.

Метод

Вычисления были произведены методом DFT в базисе линейной комбинации атомных орбиталей в рамках программы CRYSTAL-2009 [4]. В нашей предыдущей работе [5] были исследованы различные функционалы DFT с разным процентным соотношением вклада Хартри-Фока, с целью определить, какой функционал с каким гибридным вкладом наилучшим образом описывает экспериментальную постоянную решётки (3.784 Å) и ширину запрещённой зоны (3.16 eV) в объёмной фазе TiO₂. Для титана был использован базовый комплект волновых функций вида HAYWSC-411 sp-311 d(G) [6], в свою очередь для кислорода полноэлектронный базовый комплект волновых функций вида 6s-311sp-1d [6]. Были рассмотрены функционалы PBE0, B3LYP, B3PW, SOGGAXC, и на основании проведённых расчётов для дальнейших исследований нанотрубок мы выбрали функционал B3LYP с Хартри-Фоковским вкладом, равным 14%, который позволяет достаточно точно воспроизвести как ширину запрещённой зоны (3.16 eV vs 3.18 eV в эксперименте), так и постоянные решётки (*a* = 3.784 Å и *b* = 9.51 Å *v*s *a* = 3.800 Å и *b* = 9.65 Å в расчёте).

Модели

Нами были рассмотрены четыре типа двухмерных структур TiO₂, которые в дальнейшем были использованы для создания нанотрубок. Так как двухмерные пластины можно сложить различным способом в зависимости от векторов хиральности и векторов трансляции (вектор хиральности расположен вдоль воображаемого края плоскости, которая опоясывает TiO₂ в процессе условного скручивания, в свою очередь направление вектора трансляции совпадает с осью нанотрубки), то из каждой базовой двухмерной структуры, рассмотренной в данной работе, возможно сформировать нанотрубки двух различных конфигураций (см. рисунки 1-4). Для каждой из конфигураций мы провели серию расчётов, меняя так называемые индексы хиральности (*n*,*n*) с шагом 2.

> Таблица 4. Рассчитанные параметры для 9-слойных (001) нанотрубок TiO2 с хиральностью (n,0) и (0,n). Расшифровку обозначений смотрите в таблице 2.

> > $d, A = D, A = l, A = a, A = E_g, eV = E_{top}, eV = E_{bottom}, eV = E_c, eV = E_f, eV$

Рисунок 3. Двухмерная структура 9-СЛОИНОГО (001)диоксида титана (а) и соответствую щие нанотрубки с индексами хиральности (20,0) (б) и (0, 36) (в).

Результаты для недопированного ТіО,

Рисунок 1. Двухмерная структура 3-слойного (101) диоксида титана (а) и соответствующие нанотрубки с индексами хиральности (20,20) (б) и (20, 0) (в).

формирования для четырёх двухмерных структур диоксида титана.

	a, Å	b, Å	E_{top} , eV	$E_{\rm bottom}$, eV	$E_{\rm g}, {\rm eV}$	E, eV
3-слойный (101) TiO ₂	3.00	3.00	-4.12	-0.29	3.83	0.79
6-слойный (101) ТіО ₂	3.53	5.51	-3.60	0.56	4.17	0.93
9-слойный (001) TiO ₂	3.44	3.44	-3.07	0.88	3.95	0.86
6-слойный (001) TiO ₂	3.02	3.77	-4.07	0.08	4.15	0.54

Таблица 2. Рассчитанные параметры (внутренний диаметр нанотрубки d, внутренний диаметр нанотрубки D, толщина стенки трубки l, длина вектора транслящии a, ширина запрещённой зоны E_{g_2} энергетическое положение вершины валентной зоны E_{top} и дна зоны проводимости Ebottom, энергия скручивания Es и энергия образования нанотрубки Ef)

для 3-слойных (101) нанотрубок TiO2 с хиральностью (n,n) и (n,0)

	(n,n)	$d, \mathrm{\AA}$	D, Å	1, Å	a, Å	E_{g} , eV	E_{top} , eV	$E_{\rm bottom}$, eV	$E_{\rm c}, {\rm eV}$	Ef, eV
7	(6,6)	5.60	9.29	3.69	2.99	4.19	-3.77	0.41	1.21	2.00
ypt	(8,8)	6.42	10.11	3.69	2.98	3.78	-2.51	1.27	0.81	1.59
TX.	(10,10)	8.09	11.84	3.75	2.97	3.69	-2.71	0.99	0.52	1.31
é.	(12, 12)	9.88	13.67	3,79	2.97	3.74	-2.96	0.78	0.37	1.15
3 E	(14, 14)	11.70	15.51	3.81	2.97	3.75	-3.10	0.64	0.26	1.05
GKI (1)	(16,16)	13.56	17.39	3.82	2.97	3.77	-3.24	0.53	0.20	0.98
śd	(18,18)	15.44	19.27	3.83	2.97	3.78	-3.35	0.44	0.16	0.94
LOH	(20,20)	17.32	21.16	3.84	2.97	3.79	-3.42	0.36	0.13	0.91
Ha	(22,22)	19.21	23.06	3.84	2.97	3.79	-3.49	0.30	0.11	0.89
	(24,24)	21.10	24.95	3.85	2.97	3.79	-3.54	0.25	0.09	0.87
-	(6,0)	5.38	5.66	0.27	5.13	3.41	-0.95	2.45	3.39	4.17
App	(8,0)	6.40	10.08	3.68	5.06	4.30	-2.89	1.41	2.12	2.91
Ŋ.	(10,0)	9.60	13.06	3.46	5.08	4.67	-3.21	1.46	0.28	1.07
<u>S</u>	(12,0)	11.53	15.05	3.52	5.10	4.73	-3.29	1.44	0.31	1.09
5 (C	(14,0)	13.49	17.05	3.56	5.11	4.78	-3.36	1.41	0.33	1.11
нотрубкі (л.	(16,0)	15.46	19.05	3.58	5.11	4.80	-3.42	1.39	0.35	1.13
	(18,0)	17.44	21.05	3.60	5.12	4.82	-3.46	1.35	0.36	1.15
	(20,0)	19.43	23.04	3.62	5.12	4.83	-3.50	1.33	0.38	1.16
Ha	(22,0)	21.42	25.05	3.63	5.12	4.84	-3.53	1.30	0.39	1.18
Sarth	(24,0)	23.41	27.05	3.64	5.12	4.85	-3.56	1.28	0.40	1.19

-	(6.0)	6.47	19.82	13.35	3.39	3.06	-2.91	0.15	0.64	1.51	
vpr	(8.0)	8.15	21.25	13.10	3.43	3.29	-2.91	0.38	0.60	1.46	
F.	(10.0)	10.56	23.60	13.04	3.43	3.31	-2.88	0.43	0.57	1.44	
á	(12.0)	13.01	25.99	12.98	3.44	3.32	-2.85	0.47	0.56	1.42	
2 G	(14.0)	15.47	28.40	12.93	3.44	3.32	-2.81	0.51	0.55	1.41	a
(C)	(16.0)	17.92	30.77	12.85	3.45	3.32	-2.75	0.57	0.54	1.40	
<u>r</u> py	(18.0)	20.35	33.09	12.74	3.46	3.33	-2.65	0.68	0.53	1.39	6
ЮН	(20.0)	22.77	35.36	12.59	3.47	3.33	-2.51	0.82	0.52	1.38	
Ha	(22.0)	25.15	37.61	12.46	3.48	3.34	-2.38	0.96	0.51	1.37	
	(24.0)	27.53	39.90	12.37	3.49	3.35	-2.27	1.08	0.50	1.36	*
	(0.6)	5.48	15.90	10.42	3.59	3.16	-1.67	1.50	0.40	1.26	
	(0.8)	6.97	19.17	12.20	3.39	4.16	-2.81	1.34	-0.01	0.86	
з	(0.10)	9.04	21.98	12.94	3.37	4.29	-2.87	1.42	-0.12	0.74	
	(0.12)	11.23	24.55	13.32	3.36	4.22	-2.77	1.45	-0.11	0.75	
	(0.14)	13.33	26.71	13.38	3.36	4.28	-2.83	1.44	-0.07	0.79	
ype	(0.16)	15.30	28.59	13.29	3.38	4.29	-2.83	1.46	-0.04	0.82	B
KT	(0.18)	17.13	30.38	13.24	3.41	4.19	-2.74	1.45	-0.02	0.84	
(d)	(0.20)	18.61	31.79	13.18	3.44	4.00	-2.63	1.37	-0.03	0.84	
2 (i	(0.22)	20.28	33.47	13.19	3.47	3.86	-2.58	1.28	-0.05	0.82	
QK QK	(0.24)	22.27	35.49	13.22	3.48	3.85	-2.58	1.26	-0.07	0.79	4
7 D	(0.26)	24.4	37.59	13.22	3.49	3.79	-2.59	1.20	-0.09	0.77	
HO	(0.28)	26.4	39.71	13.27	3,49	3.76	-2.57	1.19	-0.10	0.76	
Ha	(0.30)	28.5	41.82	13.31	3.49	3.74	-2.56	1.18	-0.11	0.75	
	(0.32)	30.6	43.94	13.35	3.49	3.71	-2.54	1.18	-0.12	0.74	
	(0.34)	32.7	46.05	13.39	3.49	3.69	-2.52	1.17	-0.13	0.74	
	(0.36)	34.8	48.19	13.42	3.49	3.68	-2.50	1.18	-0.13	0.73	
	(0.38)	36.9	50.31	13.45	3.49	3.67	-2.49	1.18	-0.14	0.73	
	(0.40)	39	52.51	13.47	3.48	3.67	-2.48	1.19	-0.14	0.72	

Отрицательность энергии скручивания свидетельствует о том, что структуре 9-слойного (001) ТіО₂ выгоднее находиться именно в виде скрученных нанотрубок с хиральностью (0, *n*), чем в виде двухмерной пластины, и что стабильность нанотрубок с такими индексами и структурой выше, чем у всех остальных. Для проведения дальнейших расчётов нанотрубок, допированных атомами других элементов (C, N, S и Fe), была выбрана 9слойная нанотрубка с индексами хиральности (0,36), как наименьшая из всех трубок с подходящими параметрами.

Ширина запрещённой зоны, полученная в расчётах нанотрубок, показывает, что переход от объемной фазе к нанотрубкам кардинально не меняет расположение краёв запрещённой зоны: значительные отклонения ширины запрещённой зоны от общей картины были замечены только для нанотрубок малого диаметра, у которых слишком велико внутреннее напряжение.

(n 0) u (0 n)	Расшифровь	у обозначен	ний смотрите	в таблице 2	

	(n,n)	d, Å	$D, \mathrm{\AA}$	l, Å	a, Å	$E_{\rm g},{\rm eV}$	E_{top} , eV	$E_{\rm bottom},{\rm eV}$	$E_{\rm c}, {\rm eV}$	$E_{\rm f},{ m eV}$
ы	(8,0)	7.11	12.07	4.96	10.45	3.96	-2.83	1.13	0.23	1.17
Iyı	(10,0)	9.44	14.40	4.97	10.48	3.97	-2.90	1.07	0.19	1.12
ук	(12,0)	11.71	16.64	4.93	10.41	4.37	-3.19	1.18	0.15	1.08
rTF (1	(14,0)	13.93	18.84	4.91	10.41	4.35	-3.28	1.07	0.12	1.05
КИ 0, <i>і</i>	(16,0)	16.15	21.04	4.89	10.41	4.33	-3.34	0.99	0.09	1.03
.) ((18,0)	18.34	23.22	4.88	10.42	4.30	-3.37	0.93	0.08	1.01
отр	(20,0)	20.59	25.46	4.87	10.42	4.29	-3.40	0.89	0.06	1.00
ан	(22,0)	22.81	27.67	4.86	10.42	4.26	-3.41	0.85	0.05	0.99
Ξ	(24,0)	25.03	29.88	4.86	10.43	4.25	-3.42	0.82	0.05	0.98
П	(0,6)	17.50	22.34	4.84	3.57	4.25	-3.15	1.11	0.07	1.01
убк урь	(0,7)	20.83	25.66	4.83	3.56	4.23	-3.21	1.02	0.05	0.99
огр укт (0, <i>n</i>	(0,8)	24.16	28.99	4.83	3.55	4.21	-3.26	0.95	0.04	0.98
Нан стр ((0,9)	27.49	32.31	4.83	3.55	4.20	-3.30	0.90	0.03	0.97
_	(0,10)	30.81	35.64	4.82	3.54	4.20	-3.33	0.87	0.03	0.96

Результаты для допированного TiO₂

8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Pristine TiO₂-NT 18 cted onto all orbitals of impurity atoms (b) ojected onto all orbitals of Ti atoms projected onto all orbitals of O atom C-doped TiO₂-NT

Рисунок 5. Расчёт плотности электронных состояний для недопированных нанотрубок из 9-слойного (001) TiO₂ с индексами хиральности (0,36), и нанотрубок аналогичной конфигурации с замещение атомов кислорода на атомы C, N, S, и атомов титана на

Рисунок 2. Двухмерная структура 6-слойного (101) диоксида титана (а) и соответствующие нанотрубки с индексами хиральности (20,0) (б) и (0, 20) (в).

аблица 5. Рассчитанные параметры для 6-слойных (001) нанотрубок TiO₂ с хиральностью

(n,0) и (0,n). Расшифровку обозначений смотрите в таблице 2.

	(<i>n</i> , <i>n</i>)	<i>d</i> , Â	D, Å	1, Å	a, Å	E_{g}, eV	E_{top} , eV	Ebottom, eV	Ec,eV	$E_{\rm f}, {\rm eV}$
<u>1</u>	(6,0)	5.70	14.44	8.74	3.59	3.54	-3.08	0.46	1.08	1.62
	(8,0)	7.42	16.36	8.94	3.58	3.58	-3.26	0.33	1.07	1.61
3	(10,0)	9.10	18.14	9.04	3.58	3.61	-3.42	0.19	1.03	1.58
	(12,0)	10.83	19.81	8.98	3.60	3.72	-3.44	0.28	0.99	1.53
6	(14,0)	12.55	21.37	8.82	3.63	3.88	-3.29	0.59	0.94	1.48
(11)	(16,0)	14.25	22.91	8.66	3.66	4.06	-3.13	0.93	0.88	1.42
:	(18,0)	15.86	24.41	8.55	3.70	4.23	-3.07	1.16	0.81	1.35
	(20,0)	16.74	25.27	8.52	3.74	4.50	-3.57	0.93	0.72	1.26
	(22,0)	18.34	26.79	8.46	3.76	4.46	-3.37	1.09	0.64	1.18
	(24,0)	20.01	28.45	8.44	3.77	4.40	-3.31	1.09	0.57	1.11
	(0,8)	5.01	8.91	3.90	3.19	4.90	-3.41	1.49	0.49	1.03
	(0,10)	5.20	9.11	3.91	3.25	4.51	-3.04	1.46	0.50	1.04
	(0,12)	6.39	10.31	3.92	3.25	4.49	-3.08	1.41	0.47	1.01
-	(0,14)	7.60	11.53	3.93	3.25	4.48	-3.12	1.36	0.45	0.99
(0,)	(0,16)	8.80	12.74	3.94	3.25	4.47	-3.16	1.31	0.43	0.97
	(0,18)	9.99	13.94	3.95	3.25	4.45	-3.18	1.27	0.42	0.96
	(0,20)	11.16	15.13	3.97	3.25	4.44	-3.21	1.23	0.40	0.94
	(0,22)	12.33	16.31	3.98	3.25	4.43	-3.23	1.20	0.39	0.93
	(0,24)	13.49	17.49	4.00	3.25	4.42	-3.25	1.17	0.37	0.91

Ссылки

[1]. S. Hara. M. Yoshimizu, S. Tanigawa. L. Ni, B. Ohtani, and H. Irie., P. B. Petrov, I. I. Ivanov, et al., J. Phys. Chem. C 116, 17458 (2012).

[2]. Y.-C. Nah, I. Paramasivam, and P. Schmuki, ChemPhysChem, 11, 2698 (2010). [3]. M. Niu, D. Cheng, D. Cao, Int. J. Hydr. En, 38, 1251 (2013).

[4] R. Dovesi et al., CRYSTAL09 User's Manual (University of Torino, Torino, 2009).

[5] O. Lisovski, S. Piskunov, Yu.F. Zhukovskii, and J. Ozolins, IOP Conf. Series: Mater. Sci. Engineering, 38, 012057 (2012).

[6]. S. Piskunov, E. Heifets, R. . Eglitis, and G. Borstel, Comp.Mat.Sci., 29, 165 (2004).

атомы Fe. Рисунок 4. Двухмерная

структура 6-слойного (001) диоксида титана (а) и соответствующие нанотрубн с индексами хиральности (20,0) (б) и (0, 20) (в).

Выводы

были Методами квантовой ХИМИИ проведены нанотрубок расчёты различной систематические конфигурации из диоксида титана.

Основываясь на отрицательности энергий образования нанотрубок мы предполагаем, что наиболее стабильны будут нанотрубки из 9-слойного ТіО₂ с индексами Миллера (001) и индексами хиральности (0,*n*).

Для наиболее стабильных нанотрубок было проведено допирование и рассмотрены изменения в электронной структуре в окрестностях запрещённой зоне, что служит важным шагом ДЛЯ понимания возможного модифицирования нанотрубок для улучшения их фотокаталитических свойств.

Работа частично поддержана Латвийской Национальной программой исследований LATENERGI.

