

РЕАКТОРНЫЙ КОМПЛЕКС ПИК

СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ

В.Л.АКСЕНОВ

Гатчина 2014

ФИНАНСИРОВАНИЕ СТРОИТЕЛЬСТВА РК ПИК

(Σ=24,3 млрд.руб.)

ОБЩИЙ ПЛАН РЕАКТОРНОГО КОМПЛЕКСА ПИК

Реакторный комплекс ПИК в 2010 г.

Хранилище ЖРО со спецсетями, декабрь 2011

Постановление Правительства Российской Федерации от 10 ноября 2012г. № 1104

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

постановление

от 19 воября 2012 г. №1194

MOCKBA

Об осуществления бюлжетных инвестиций а реконструкцию научно-исследовательского реакторного комилекса «ШИК», г. Гатчина, Леннитрыская область, федерольного государственного боджетного учреждение «Петербургский институт идерной физики им. Б.Ш.Константическа»

Правятельство Российской Федерации и остановляет:

 Осуществить в 2012 - 2013 годах бюджетные инвестицаи за счет бюджетных ассиглованый фелерального бюджета в рековструкцию научно-исследовательского реакторного комплекса «ШИК», г. Гатина, Ленивпрадская область, федоратьвого государственного бюджетного учреждения «Петербургский институт дахрной физики им. в.Л.Константивнова» (гепловая монтрость - 100 МВт, мощность, подрежищая вводу, - 65000 кв. метров, срок ввода в эксплуятацию -2013 год).

2. Спроденны федеральное государственное окоджетное учреждение «Нацкональный вселедовачельскай центр «Курчатовский институт» государственным заказчиком, а федеральное государственное боджетное учреждение «Петербургский институт ядерной физики им. Б.П.Константиновко застройщиком объектя, указыного в пункте 1 настоящего постановко застройщиком объектя, указыного в пункте 1

3. Федеральному государственному бъодкетьюму учреждению «Пацконцывый песледовательствай центр «Курчатовский институт» тавному распорядичено средств федерального бъоджета, Министерству образования и науки Российской Федерации, Министерству звоемощисского развития Российской Федерации и Макистерству финансов Российской Федерации обесаечить в пределях бюджетных ассигнований, предусмотрепных в 2012 - 2013 годах главному распорядителю средств федерального бюджета, фавансирование работ по рековструкции объекта, указанного в нункте I выстоящего постановления, с распредспением соспасно приножетию.

 Признать угратиящим силу распоряжение Правятельства Российской Федерации от 11 автуста 2007 г. № 1039-р (Собрание виконодательства Российской Федерации, 2007, № 34, ст. 4265).

Председитель Правительства Российской Федерации

Д.Мерициса

Реакторный комплекс ПИК 2013г.

Здание 100А – Блок реакторной установки

Инженерно-технические сети

Здание 100Б – Технологический блок 1 контура

Здание 100Г – Технологический блок промежуточного контура

Здание 116 – Блок резервной дизель-электростанции, резервного щита управления и тренажерно-моделирующего комплекса

Здание 122 – Аварийное хранилище жидких радиоактивных отходов

Здание 104 – Лаборатория нейтронных исследований

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «КУРЧАТОВСКИЙ ИНСТИТУТ» ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ ИМ. Б.П. КОНСТАНТИНОВА

Вертикальный разрез реактора ПИК

Активная зона реактора ПИК (с пусковым комплектом ТВС)

- 1 машина перегрузочная
- привод стержня
- гидрозатвор
- 4 центральный
 экспериментальный канал
- 5 перегрузочный барабан
- 6 источник холодных нейтронов
- 7 защита разборная
- **3** поглощающий стержень
- 9 корпус реактора с активной зоной
- 10 отражатель тяжелой воды
- 11 горизонтальный
 - экспериментальный канал 12
- привод шторок

- 1- поглощающие шторки из гафния
- 2 стержни выгорающего поглотителя
 Gd₂O₃ + ZrO₂
- 3 циркониевые чехлы ТВС
- 4 твэлы с уменьшенным содержанием топлива (0,48 от номинального)
- 5 твэлы с номинальным содержанием топлива
- 6 ТВС с образцами-свидетелями материала корпуса
- 7 облучаемые образцы

И, наступил физпуск - 28 февраля 2011г. в 16-30!

Расположение экспериментальных каналов и блоков детектирования штатной и дополнительной аппаратуры СУЗ при физическом пуске

Основные детекторы АСУЗ-ОЗР:

каналы К-1÷К-8 со свинцовой защитой, на схеме выделены 4 задействованных основных канала АСУЗ-ОЗР № (1÷4).

Нейтронный источник:

Центральный экспериментальный канал.

Детекторы дополнительной аппаратуры СПУ-1-1ММ:

Nº 1	в канале КД-2 ЖВЗ или К-1 ЖВЗ
Nº 2	в канале НЭК2
Nº 3	в НЭК4 или НЭК6.

Нейтрон-активационные детекторы:

Центральный экспериментальный канал (Au - 11шт., In - 2 шт., Ni - 1 шт.)

Горизонтальный экспериментальный канал ГЭК4-4' (Au-10 шт., 2 шт.)

Вертикальный экспериментальный канал ВЭК1 (Au-5 шт.) Вертикальный экспериментальный канал ВЭК3(Au-5шт.) Наклонный экспериментальный канал НЭК2 (Au - 1 шт.) Наклонный экспериментальный канал НЭК4 (Au - 1 шт.) Наклонный экспериментальный канал НЭК6 (Au - 1 шт., In - 1 шт.) указаны крестиками.

Нормированная на мощность реактора 1Вт плотность потока тепловых нейтронов в центральном экспериментальном канале

Нормированная на мощность реактора 1Вт плотность потока тепловых нейтронов вдоль <u>горизонтального экспериментального</u> канала 4-4

РЕАКТОРНЫЙ КОМПЛЕКС ПИК

ДОРОЖНАЯ КАРТА

График выполнения работ по проекту модернизации НИРК ПИК

	2012	2013	2014	2015	2016	2017	2018
1. Проект							
1.1. Разработка проекта							
1.2. Государственная экспертиза							
1.3. Разработка рабочей документации							
Реализация проекта				1			
2. Установка по извлечению трития							
2.1. Изготовление нестандартного оборудования							
2.2. Поставка типового оборудования							
2.3. Строительные работы							
2.4. Монтажные работы							
3. Модернизация систем, важных для безопасности							
3.1. Модернизация систем основного и надежного электроснабжения							
3.2. Модернизация арматуры элементов трубопроводов СВБ							
3.3. Модернизация контрольной аппаратуры СВБ							
4. Модернизация элементов систем обращения с РВ-РАО и ОЯТ							
4.1 Модернизация узлов приема и затаривания РВ-РАО							
4.2. Модернизация элементов и узлов транспортной схемы перемещения ОЯТ							
5. Испытания, предъявление стройнадзору РТН, ввод в эксплуатацию							

График работ по реконструкции лабораторного комплекса РК ПИК

	2013		2014			2015			2016				2017			2018					9		
ПРОЕКТ																							
Разработка проекта																							
Государственная экспертиза																							
ПК-1 Центр Обработки Данных, зд.105																							
Инженерная инфраструктура																							
Строительные работы зд.105																							
Системы инженерного обеспечения																							
Системы обеспечения научных исследований																							
ПК-2 источник Халодных Нейтронов-1 ГЭК-3																							
1. Разработка рабочей документации																							
2. Инженерная инфраструктура																							
Строительные работы, зд.100Е и спутники																							
Системы инженерного обеспечения																							
3.Комплекс ИХН																							
Изготовление и монтаж внутриреакторной части																							
Создание криогенного комплекса																							
4. Нейтроноводный комлекс (1 очередь)																							
Головная часть нейтроноводной системы (коллиматоры, защита)																							
Транспортная часть нейтроноводной системы																							
 Испытания, предъявление стройнадзору РТН, ввод в эксплуатацию 																							

Сравнение исследовательских высокопоточных нейтронных реакторов

Установка/ местоположение	Дата ввода в эксплуатацию	Кол-во инструментов на пучках		
ПИК Гатчина, Россия	2019 (план)	100 МВт	4 × 10 ¹⁵ н/см ² с	50
НFR Гренобль, Франция	1971	58 MBT	1.5 ×10 ¹⁵ н/см ² с	40
НFIR Оук Ридж, США	1965 (модернизирован 2007)	85 MBT	2.5 × 10 ¹⁵ н/см²с	12
FRM2 Мюнхен, Германия	2005	20 МВт	0.8 × 10 ¹⁵ н/см ² с	27
BER2 Берлин, Германия	1973	10 МВт	0.086×10 ¹⁵ н/см ² с	25
ОРАL Сидней, Австралия	2006	20 МВт	0.4 × 10 ¹⁵ н/см ² с	7
CARR Пекин, Китай	2010	60 МВт	0.8 × 10 ¹⁵ н/см ² с	6
WWR-M Гатчина, Россия	1959	18 MW	0.45 ×10 ¹⁵ н/см²с	14

МЕЖДУНАРОДНЫЙ ЦЕНТР

НЕЙТРОННЫХ ИССЛЕДОВАНИЙ

30 апреля 2013. НИЦ «Курчатовский институт» - Гатчина Экспериментальный зал РК ПИК

«Всегда в жизни надо выбирать такие проблемы, и в этом заключается и некое искусство ученого, которые были бы важны, полезны Родине»

Академик И.К. Кикоин

Институт атомной энергии им. И.В. Курчатова

Экспериментальные станции

30 апреля 2013. НИЦ «Курчатовский институт» - Гатчина Нейтроноводный зал

График создания экспериментальных станций

	2015			2016			2017			2018				2019			2020				2021		
ПРОЕКТ							T																\Box
Разработка проекта																							
Государственная экспертиза																							
Источники нейтронов																							
Замена каналов реактора, криогенные системы дополнительных ИХН, ИУХН, НТГП, инженерные системы ИГН, ввод в эксплуатацию дополнительных ИХН и ИУХН)																							
Экспериментальные станции																							
Ядерная физика и физика элементарных частиц 1-ый этап (3 прибора)																							
Ядерная физика и физика элементарных частиц 2-ый этап (7 прибора)																							
Физика конденсированного состояния 1-ый этап (9 приборов)																							
Физика конденсированного состояния 2-ый этап (13 приборов)																							
Молекулярно-биологический центр																							
Лаборатория и инфраструктура для молекулярно- биологических исследований																							

9

Экспериментальные станции из GKSS (Гамбург) для РК ПИК

http://lns.pnpi.spb.ru/pnpi-gkss/

I

30 апреля 2013. НИЦ «Курчатовский институт» - Гатчина В.В. Путин с Х. Дошем и С. Шмидтом

Образовательные программы

Санкт Петербургский Государственный Университет

HOBOE

Кафедра ядернофизических методов исследований

Заведующий кафедрой и декан физического факультета проф. М.В. Ковальчук

Проект развития социальной инфраструктуры для Международного центра нейтронных исследований, г. Гатчина

Спортивный

комплекс

Существующая

гостиница

Жилая зона ПИЯФ

Конферец-

Новая гостиница

вав зона

Административная структура (предложение)

Семинары - 2013

26 апреля Дубна

4-15 июня Гатчина

19-20 сентября Гатчина

17-18 октября Гатчина

Для обсуждения

Нейтронные и рентгеновские детекторы Председатели: В.Н. Швецов - А.П.Булкин

НИЦ «Курчатовский институт» - ILL Председатели: В. Аксенов- Э. Харрисон

Малоугловое рассеяние нейтронов Председатели: С. Григорьев, А. Окороков

Нейтронные центры ФРГ - НИЦ «Курчатовский институт» Председатели: М. Ковальчук - С. Шмидт

- 1. Программа исследований
- Экспериментальные станции и исследовательская инфраструктура для РК ПИК
- 3. Образовательные программы и обмен

Добро пожаловать в Гатчину!

Нейтроны в структурной нанобиодиагностике

В.Аксенов, Наука в России, №4 (2010); Российские нанотехнологии 6 (2011) №7-8

Биологические макромолекулы в растворах

Breaking the protein rules

by Tanguy Chouard (editor for Nature in London) Nature (2011) V. 471 p.151

Классическая догма молекулярной биологии: функция белка напрямую определяется его уникальным образом упакованной пространственной структурой. Почему функционируют белки (или их фрагменты), которые находятся в «неупорядоченном» виде?

Замок и ключ

Согласно традиционным представлениям, белок немедленно после синтеза сворачивается в уникальную и стабильную конформацию, — «ключ» (слева). Его форма при этом идеально приспособлена для взаимодействия с субстратом или другим белком, — «замком» (справа). Индуцированное сворачивание

Неструктурированная часть белкового регулятора активности генов CREB (слева) использует «замок», чтобы самой приобрести форму «ключа» (справа), вместо того, чтобы принимать эту форму самостоятельно и заранее.

Переменчивая форма

Сигнальный белок Sic1 даже в связанном состоянии остается неструктурированным, а каждый из его фосфорилированных остатков (показаны цифрами) занимает единственный активный центр по очереди. Этот белок представляет собой смесь конформаций в состоянии динамического равновесия. Белок супрессор опухолей р53. В его состав входит как «обычный», упорядоченный в пространстве, домен (показан коричневой поверхностью), так и неструктурированные сегменты (цветные), которые отвечают за взаимодействие с сотнями различных белков.

«... сегодня исследования неструктурированных белков во многом напоминают романтическое время получения первых белковых кристаллов в 1950-1960-х, когда каждая новая структура была настоящим событием.»

T. Chouard Nature (2011) V. 471

Изучение структуры и функции рибосомы

Лауреаты Нобелевской премии по химии за 2009 год: Ада Йонат, Венки Рамакришнан и Томас Стайц. Фото с сайтов www.jewishjournal.com, www.cef-mc.de и opa.yale.edu

за установление пространственного строения рибосомы и создание структурной базы для выяснения механихма функционирования белок-синтезирующего аппарата клетки и его ингибиторов

Пространственная структура рибосомы

Модели пространственной структуры полной функционирующей рибосомы и ее субъединиц. Показаны три молекулы тРНК: красная (А) и зеленая (Р) участвуют в образовании очередной пептидной связи в пептидилтрансферазном центре, желтая (Е) — выходит из рибосомы. На модели малой субъединицы в декодирующем центре виден участок мРНК (светложелтый). L1, L7/12 — белки большой субъединицы.

Модели большой субъединицы бактериальной рибосомы с возрастающим разрешением: 9 Å (слева), 5 Å (в центре) и 2,4 Å (справа).

Структура рибосомы. Как изменяется рибосомная частица в процессе биосинтеза белка

Получены структурные модели рибосомных частиц по данным рассеяния рентгеновских лучей и нейтронов с использованием изотопического замещения и анализа поляризации

Полная 705 - частица Две субчастицы: большая (50S): РНК - зеленый, белок - сиреневый малая (30S): РНК - желтый, белок - красный

Малая (30S) субчастица РНК - зеленый Малая (30S) субчастица с энзиматически отрезанной головкой. РНК - зеленый

Установлено, что в процессе биосинтеза белка рибосома осциллирует между двумя конформациями, отличающимися геометрическми размерами. Рибосомные РНК располагаются преимущественно в центре рибосомной частицы. Рибосомные белки в растворе имеют глобулярную конформацию.

Фан Ликсин, Д.Свергун, В.Аксенов и др. Поверхность, 11 (1998) 33; I.Serdyuk, V.Aksenov et al. J.Mol.Biol., 292 (1999) 633

Белок фактор элонгации трансляции eEF1A

Главная роль факторов элонгации: увеличение скорости элонгации на несколько порядков и способствование четкой фиксации комплексов.

Элементарный элонгационный цикл рибосомы, в результате которого прочитывается один триплет (кордон) мРНК и добавляется одна аминокислота к растущему полипептиду

Пример неструктурированного белка. В экспериментах по рассеянию нейтронов с использованием изотопного замещения и анализа поляризации установлено, что белок eEF1A не имеет фиксированной жесткой структуры в растворе, а его конформация более расширена и разупорядочена, чем у его прокариотических аналогов.

Предложено четвертое нативное состояние эукариотических факторов состояние с высокой междоменной подвижностью.

В.Аксенов, Д.Свергун и др. Поверхность 11 (1998) 33; I.Serdyuk, V.Aksenov et al. J.Mol.Biol. 292 (1999) 633; T.Budkevich, I.Serdyuk, V.Aksenov et al. Biochemistry, 41 (2002) 15342

От структуры и функции рибосомы к новым антибиотикам

Упрощенная схема работы рибосом (слева) и ее блокирования антибиотиком (справа). На матрице ДНК (DNA) синтезируется информационная РНК (RNA), к которой впоследствии присоединяются две субъединицы рибосомы (ribosome) и начинается синтез белка (protein). Каждую аминокислоту (amino acid), входящую в состав белковой цепочки, к рибосоме доставляет транспортная РНК (схематически изображенная в виде вилочки). Некоторые антибиотики способны связываться с рибосомами бактерий, останавливая синтез белка и приводя к гибели бактериальных клеток.

T. Steitz Plenary lecture XXII Congress of the International Union of Crystallography, 22-30 August, 2011

Магнитные наножидкости в нанобиотехнологиях

Нанобиотехнологии: магнитные биосовместимые наноматериалы.

Нейтронная диагностика магнитных наножидкостей для применений в

биомедицине

Иллюстрация (K.M. Krishnan, IEEE Trans. Magn., 46 (2010) 2523-2558)

Проблема применения биосовместимых коллоидных наноматериалов: размеры и агрегация наночастиц в физиологических условиях (pH=7)

Побочные эффекты в биомедицине:

- трудности выведения;
- образование сгустков крови;
- ослабление терапевтического эффекта;

Задачи

- диагностика частиц и агрегатов
- определение режимов агрегации и их контроль
- управление структурой коллоидов

Развита теория кинетики образования и роста кластеров в растворах.

$$\frac{\partial f(n,t)}{\partial t} = w_{n-1,n}^{(+)} f(n-1,t) + w_{n+1,n}^{(-)} f(n+1,t) - w_{n,n+1}^{(+)} f(n,t) - w_{n,n-1}^{(-)} f(n,t)$$

$$\frac{w_{n-1,n}^{(+)}}{w_{n,n-1}^{(-)}} = \exp\left\{-\frac{\Delta G(n) - \Delta G(n-1)}{k_B T}\right\}$$

Уравнения Френкеля-Зельдовича

М.В.Авдеев, В.Л.Аксенов, Т.В.Тропин Ж. физич. химии, 84 (2010)

Проведена комплексная нейтронная диагностика наномагнетита (Fe₃O₄) в неполярных органических средах: открыт эффект селективности размера магнитных наночастиц при стабилизации раствора.

Вариация контраста: H/D

Эффект селективности (контролируемого изменения) размера магнитных наночастиц при стабилизации различными типами ПАВ объясняет их магнетореологические свойства и открывает путь к синтезу нового класса концентрированных биосовместимых магнитных наножидкостей.

М.В.Авдеев, В.Л.Аксенов, УФН 180 (2010) 10; В.Л.Аксенов и др. Кристаллография 56 (2011) № 5

Проведены опыты с раковыми клетками мозга Обнаружено направленное движение магнитных наночастиц в градиентном магнитном поле.

Глиобластома

Рак мозга Распространенность - 15% Выживаемость - < 2%

Главная проблема терапии/хирургии - высокая мобильность клеток (причина неизвестна)

Миграция клеток

с внедренными магнитными частицами в магнитном поле

1 день

Используемые МЖ: наномагнетит в воде, стабилизация миристиновой и ладриновой кислотами.

Данный метод управления раковыми клетками позволяет локализовать их для проведения гипертермии.

ОИЯИ - GKSS - Eppendorf UK Hamburg

Установлена локализация магнитных наночастиц в раковых клетках, исследована их биосовместимость.

Наночастицы в образце

Токсичность 120% 100% 🗆 G44 Cell viability in % 80% G55 G112 60% G122 40% Astrocytes 20% 0.25 µL/ml 0.25 µL/ml Control LA+LA MA+MA

Выживание клеток через 2 дня после введения их в биологическую среду магнитных наночастиц

стрелками) в клетках (зеленые 488 нм)

Наночастицы (темные пятна, указаны белыми

В голубом флюоресцентном свете при концентрации 0.5 µL/mL видны наночастицы в окружении ядер клеток.

10µm G55 0,5 NP-MA 2d

Установлено, что наночастицы подавляют рост раковых клеток. Такой же эффект наблюдался для водных растворов фуллеренов. В случае магнитных наночастиц эффект усиливается при приложении магнитного поля.