Кристаллическая структура, фазовый состав и сверхпроводимость новых соединений на основе FeSe

Дмитрий Иносов

Max Planck Institute for Solid State Research

Зеленогорск, 2013

Stuttgart

Collaborators

MPI-FKF Stuttgart, Germany

Neutron scattering: J. T. Park, G. Friemel, J.-H. Kim, Yuan Li, V. Hinkov, B. Keimer;

LDA calculations: A. Yaresko;

Single crystals: C. T. Lin *et al.*

Augsburg University, Germany

Single crystals: V. Tsurkan, J. Deisenhofer, H.-A. Krug von Nidda, A. Loidl.

Université Paris-Sud

NMR measurements: J. Bobroff, Y. Texier, Y. Laplace.

Institut Laue-Langevin, Grenoble, France

Instrument support: A. Ivanov

ISIS, Rutherford Appleton Laboratory

Instrument support: E. A. Goremychkin

Oak Ridge National Lab

Band structure calculations: T. A. Maier

Unconventional superconductors

Particle-hole scattering

Lindhard susceptibility: $\chi_0(\mathbf{q}, \omega) = 2 \int \frac{\mathrm{d}\mathbf{k}}{(2\pi)^d} \frac{n_{\mathrm{F}}(\epsilon_{\mathrm{k}}) - n_{\mathrm{F}}(\epsilon_{\mathrm{k+q}})}{\epsilon_{\mathrm{k}} - \epsilon_{\mathrm{k+q}} + \omega + \mathrm{i}0^+}$

Spin exciton below the particle-hole continuum:

$$\chi(\mathbf{q},\,\omega) = \frac{\chi_0(\mathbf{q},\,\omega)}{1 - g(\mathbf{q})\chi_0(\mathbf{q},\,\omega)}$$

Resonant mode in copper oxides

"Hourglass" dispersion in cuprates: Fermi-surface + *d*-wave gap

I. Eremin et al., Phys. Rev. Lett. 94, 147001 (2005)

S. M. Hayden *et al.*, Nature **429**, 531 (2004)

Original discovery: J. Rossat-Mignod *et al.*, Physica C **185**, 86 (1991)

Heavy-fermion superconductor

C. Stock *et al.*, Phys. Rev. Lett. **100**, 087001 (2008)

Iron-arsenide superconductors

Fe-based superconductors

C. W. Chu, Nat. Phys. 5, 787 (2009)

Resonant mode in Fe-based superconductors

Magnetic resonant mode in BaFe_{2-x}Co_xAs₂

D. S. Inosov et al., Nature Phys. 6, 178 (2010)

Magnetic resonant mode in BaFe_{2-x}Co_xAs₂

D. Inosov et al., Nature Phys. 6, 178 (2010)

D. S. Inosov et al., Nature Phys. 6, 178 (2010)

*Q***-,** ω -, and *T***-dependence of the spin excitations**

D. S. Inosov et al., Nature Phys. 6, 178 (2010)

Linear relationship between $E_{\rm res}$ and $T_{\rm c}$

Magnetic resonant mode in $A_{1-x}Fe_{2-y}Se_2$

Iron selenides of the "245" family

F. Ye *et al.*, PRL **107**, 137003 (2011), see also V. Yu. Pomjakushin *et al.*, PRB (2011).

Magnetic order and iron-vacancy superstructure

from V. Yu. Pomjakushin *et al.*, Phys. Rev. B **83**, 144410 (2011); JPCM **23**, 156003 (2011).

J. T. Park *et al.*, PRL **107**, 177005 (2011)

Metal or insulator?

Y. Zhang et al., Nature Mater. (2011), see also T. Qian *et al.*, PRL (2011),
D. Mou *et al.*, PRL (2011),
X.-P. Wang *et al.*, EPL (2011), etc.

F. Chen et al., PRX 1, 021020 (2011)

Nanoscale phase separation

W. Li *et al.*, Nat. Phys. **8**, 126 (2012)
A. Ricci *et al.*, PRB **84**, 060511(R)
F. Chen *et al.*, PRX **1**, 021020 (2011)

Nanoscale phase separation

A. Bosak et al., arXiv:1112.2569; V. Yu. Pomjakushin et al., arXiv:1204.5449

See also:

X. G. Luo et al., NJP 13, 053011 (2011); Y. Liu et al., SUST 25, 075001 (2012); etc.

Nanoscale layering of the two phases

A. Charnukha et al., PRL 109, 017003 (2012)

See also:

- S. C. Speller *et al.*, arXiv:1204.5472
- R. H. Yuan et al., Sci. Rep. 2, 221 (2012)

What is the composition and structure of the superconducting phase?

- doping level/concentration of the alkali metal (K, Rb, or Cs)
- presence of vacancies
- vacancy order or disorder

Inelastic neutron scattering on A_{1-x}Fe_{2-y}Se₂

IN8 triple-axis spectrometer (ILL)

Resonant mode in Rb_{1-x}Fe_{2-v}Se₂

Linear relationship between $E_{\rm res}$ and $T_{\rm c}$

J. T. Park, D. S. Inosov *et al.*, PRB (2010);
M. Wang *et al.*, PRB **81**, 174524 (2010);
S. Shamoto *et al.*, PRB **82**, 172508 (2010).

Quasi-two-dimensionality of the resonant mode

(d)-

T = 1.5 K
 T = 35 K

= 1.5 K

e)

25

T = 35 K

2.663 Å⁻¹

= 0.5=

15

Energy (meV)

20

G. Friemel et al., Phys. Rev. B 85 (2012), 140511(R)

Normal-state response

FlatCone multi-analyzer at IN8

Reciprocal-space structure of the resonance

(HK0) scattering plane

G. Friemel, J. T. Park, D. S. Inosov *et al.* Phys. Rev. B **85**, 140511(R)

Bulk-sensitive estimates of the electron count

calculations by T. A. Maier Phys. Rev. B **85** (2012), 140511(R)

No superstructure in the Fe layer!

NMR evidence for a vacancy-free SC phase

Y. Texier, J. Bobroff et al., Phys. Rev. Lett. 108, 237002 (2012)

Superconducting phase has no Fe vacancies!

It must be associated with the "compressed" minority phase with the $A_{0.3}Fe_2Se_2$ composition.

Spin excitations and resonant mode in K_{1-x}Fe_{2-y}Se₂

Summary, or what do we call a resonant mode?

- 1. Magnetic spectral weight.
- 2. Exciton of an "itinerant" character below the particle-hole continuum.
- 3. Temperature dependence, with an onset at $T_{\rm c}$.

D. Inosov et al., PRB 83, 214520 (2011)

Thank you for your attention

at the Technical University of Dresden