

Ян Зубавичус Курчатовский НБИК-центр, НИЦ «Курчатовский институт»

функциональных материалов на Курчатовском источнике СИ: статус, планы и перспективы развития

Структурная диагностика

План доклада

- Экспериментальные возможности
 Курчатовского источника
 синхротронного излучения
- Станция «Структурное материаловедение»
- Примеры материаловедческих исследований

Экспериментальные станции КИСИ

<u>Рентгеновский зал</u>		
1	«БЕЛОК»	
2	«ПРО»	
3	«РКФМ»	
4	«МЕДИАНА»	
6	«Quick-EXAFS»	
7	«CTM»	
8	«ДИКСИ»	
9	«РЕФРА»	
10	«PT-MT»	
11	«ЛЕНГМЮР»	
12	«LIGA»	
<u>ВУФ-зал</u>		
13	«ФЭС»	
14	«СПЕКТР»	
15	«ЛОКУС»	

46-я Школа ПИЯФ по ФКС, 1 2012, Ленинградская об

Модернизация

• Реконструкция и расширение экспериментального зала, обновление технической инфраструктуры (сжатые газы, жидкий азот, вытяжка)

- Новые офисные помещения, мини-гостиница для пользователей
- Проектирование новых станций
- Установка новых вставных устройств в накопительное кольцо

• Глубокая модернизация ускорительной системы: строительство нового бустера на полную энергию 2.5 ГэВ в едином туннеле с накопительным кольцом, «top-up» режим инжекции → источник СИ поколения 2.5

• Проектирование источники СИ 4-го поколения (ЛСЭ, многокольцевой ускоритель-рекуператор «MARS»)

Новые станции

<u>1-й приоритет:</u>

• «РСА» - рентгеноструктурный анализ, рутинные дифракционные исследования монокристаллов и поликристаллических порошков (сверхпроводящий вигглер)

 «ФАЗА» - фазочувствительные рентгенодифракционные методы: стоячие рентгеновские волны, дифракция высокого разрешения, резонансная рефлектометрия, многоволновая дифракция, картографирование обратного пространства, рентгеновская микротомография, резонансная дифракция, диффузное рассеяние и др.

• «ФЭС-Нанофаб» - фотоэлектронная спектроскопия с угловым разрешением и NEXAFS в сочетании с уникальной системой подготовки образца (различные методики CBB-напыления,

травление/микроструктурирование фокусированными ионными пучками) и несинхротронной диагностикой (AFM, SEM, RHEED и др.) 46-я Школа ПИЯФ по ФКС, 12-17 марта 2012, Ленинградская область

Новые станции

<u>2-й приоритет:</u>

• Белок-2 (сверхпроводящий вигглер 3 Тл, 60 полюсов)

• «Рентгеновская спектроскопия - магнитный дихроизм» - использование линейной и круговой поляризации в EXAFS/XANES; XMCD/XMLD жесткого рентгеновского диапазона для исследования магнитных материалов (сверхпроводящий вигглер 7.5 Тл, 19 полюсов)

 «Экстремальные воздействия» - структурные исследования материалов под высокими давлениями (алмазные наковальни/прессы «Париж-Эдинбург» и др.) (сверхпроводящий вигглер 3 Тл, 60 полюсов)

• SAXS/WAXS

Станция «Структурное материаловедение» (СТМ)

- В пользовательском режиме с 2004 года
- <u>Методы</u>: рентгеноабсорбционная спектроскопия XANES/EXAFS, дифракция, малоугловое рассеяние (с возможностью использования аномального рассеяния)
- <u>Деятельность</u>: комплексные структурные исследования функциональных материалов, преимущественно некристаллических и/или наноструктурированных
- <u>Объекты</u>: катализаторы, магнитные жидкости, металлполимерные композиты, металлические стекла, наноструктурированные сплавы, кластерные и координационные соединения переходных металлов
- <u>Результативность</u>: более 250 печатных работ, в том числе более 60 статей в реферируемых журналах (20 статей в 2011 г.)

Методы структурной диагностики функциональных материалов

- Дифракция
- Малоугловое рассеяние
- Спектроскопия поглощения

Близкие требования к исследуемым образцам, необходимое оборудование может быть совмещено в рамках одного прибора, комплементарная структурная информация об исследуемом объекте

СТМ : оптическая схема

Энергетический диапазон Размер пучка **3×3** mm² до ~**10×10** mkm² 5-19 keV c Si(111) SR 8-35 keV c Si(220) Диапазон s Разрешение ∆Е/Е~2×10⁻⁴ 0.001 ÷ 6 Å⁻¹ SAXS XRD 0.2 ÷ 20 Å⁻¹ 3 Фотонный поток 5 ~0.5×10⁸ фотонов/мм²/сек 8 9 $/10^{-4} \Delta \lambda / \lambda$ 6 11 1, 3, 9 Моторизованные коллиматоры 2 Монохроматор 4,5,8,13 Ионизационные камеры 14 Камера in situ исследований 6 10 7 1D изогнутый детектор для in situ дифракции 10 Флуоресцентный детектор 11 Камера малоуглового рассеяния 12 Двумерный детектор Imaging Plate 14 1D линейный газовый детектор 15 Монитор контроля положения образца 46-я Школа ПИЯФ по ФКС, 12-17 марта 9

2012, Ленинградская область

Измерительные блоки

Наиболее массовые измерения: XAFS геометрии пропускания

Технические характеристики

Источник излучения	Поворотный магнит, Е _с =7.3 кэВ
Монохроматор	Монокристалл с вырезом «channel-cut» Si(111) или Si(220)
Энергия	4.9 – 35 кэВ, ∆E/E=2×10 ⁻⁴
Поток	~ 0.5×10 ⁸ фот/сек/мм²/10 ⁻⁴ Δλ/λ
Размер пучка	От 3×3 мм до 10×10 мкм
Диапазон переданных импульсов	От 10 ⁻³ до 6Å ⁻¹ (режим SAXS), от 0.3 до 20 Å ⁻¹ (режим XRD), ∆d/d=0.2÷0.8%
Детекторы	ИК с газонаполнением, Si лавинный фотодиод, 1D газовые детекторы (линейный и изогнутый), 2D Imagingplate (Fuji)
Условия на образце	Температура от 5.5 К до 800 К, газовая среда: смеси Не, N ₂ , O ₂ , H ₂ , CO, CH ₄ (при атм. давлении)
Экспозиция	XRD: 1-20 минут, SAXS: 5-30 минут, EXAFS – 20-90 минут, XANES – 5 минут

Система напуска газов

- Трехкомпонентные смеси
- Инертные: **He**, **N**₂, **Ar**
- Окисление-восстановление О₂, H₂
- Реакционные: **СО**, **СН**₄

Регулирование температуры образца ет стабилизации Термодара уромель адномерь 20-550°С

Нет стабилизации при низкой температуре:

-120°С и -196°С

Переход с 500°С до -120°С ~ 1 часа

N₂, <u>газообразный</u> или жидкий

Термопара хромель-алюмель

Термостабилизация по току через нагревательные элементы ±1°С

 $4\times350\text{ Bt}$

Не-криокулер замкнутого цикла

<u>Минимальная достигнутая температура</u> 6К + контролируемый нагрев до комнатной температуры

Методические интересы

- Комплексное использование EXAFS, SAXS и XRD в структурной диагностике сложных неупорядоченных материалов
- Структурная диагностика функциональных материалов в условиях функционирования in situ
- Развитие методов структурного мониторинга процессов (фазовых переходов, химических превращений) с разрешением во времени
- Повышение локальности диагностических методов при исследовании микрогетерогенных объектов

Методические работы

Хирургические антибактериальные материалы Au/целлюлоза

(А.Ю. Васильков, химфак МГУ, ИНЭОС РАН)

XRD

Динамический мониторинг восстановления ацетата палладия водородом

Pd K-edge XANES

Морфология сверхпроводящих проводов Nb₃Sn

20

Томографическая реконструкция (РТМТ, Р.А. Сенин, А.С. Хлебников)

Дифракционное картографирование образца микропучком

ТОЧКА 2

Сильнотекстурированная Си

46-я Школа ПИЯФ по ФКС, 12-17 марта 2012, Ленинградская область

ТОЧКА 4

ТОЧКА 5

Использование аномального рассеяния для выделения вклада Nb-фаз

25

Низкотемпературное дифракционное исследование

APPLIED PHYSICS LETTERS 99, 122507 (2011)

Evidence that the upper critical field of Nb₃Sn is independent of whether it is cubic or tetragonal

Jian Zhou, Younjung Jo,^{a)} Zu Hawn Sung, Haidong Zhou, Peter J. Lee, and David C. Larbalestier^{b)}

Fig. 10. Occurrence of tetragonal phase in Nb₃Sn as a function of Ta and Ti additive contents (after Goldacker and Flükiger [61]).

1

2

Ta, Ti content [at. %]

3

Microstructure, composition and critical current density of superconducting Nb₃Sn wires

46-я Школа ПИЯФ по ФКС, 12-17 R. Flükiger ab., D. Uglietti^c, C. Senatore ab, F. Buta^c

2012, Ленинградская область

Cryogenics 48 (2008) 293-307

0

Примеры проводимых исследований

Катализаторы (Pd,Cu)Cl_x/ү-Al₂O₃ мягкого окисления CO

(Л.Г.Брук, Д.Титов, МИТХТ)

Исследованные образцы

- Кристаллические предшественники CuCl₂·2H₂O и PdCl₂
- Пропиточные растворы $CuCl_2$ и $CuCl_2$ -PdCl₂
- γ-Al₂O₃ чистый носитель
- Модельный катализатор CuCl₂/γ-Al₂O₃
- Катализатор $PdCl_2, CuCl_2/\gamma Al_2O_3$
- Катализатор PdCl₂, CuCl₂/γ-Al₂O₃, подверженный действию CO в различных условиях (только CO, CO+H₂O, CO+H₂O+O₂)

Задачи структурного исследования

- Установить природу активных компонентов
- Выяснить механизмы взаимного влияния Cu и Pd

Генезис активных центров: XRD

Генезис активных центров: EXAFS на К-крае палладия

Наиболее вероятно, палладий сорбируется на γ-Al₂O₃ из водного раствора PdCl₂ в виде изолированных плоско-квадратных катионов [PdCl₄]²⁻ Специфических взаимодействий Cu…Pd не проявляется

In-situ восстановление в атмосфере влажного СО (при KT): Pd XANES

In-situ восстановление в атмосфере влажного СО (при KT): XRD

In-situ восстановление в атмосфере влажного СО (при KT): Cu XANES и EXAFS

Химической модификации Cu²⁺→Cu⁺ подвергается не более 10-15% всей меди в образце (пространственная близость и влияние Pd)

Оптически прозрачные магниты (И.С. Эдельман, В.Н. Заблуда, ИФ СО РАН,

Красноярск)

Объекты исследования

Стекло (K₂O-Al₂O₃-GeO₂-B₂O₃)

> Растворение 3% Fe +0.3-2%REE

决 Закалка

Sample	Additives, mass % *	Heat treatment regime	
		Temperature, °C	Time, h
1.1		as-prepared	_
1.2	$D_{\rm T}$ O (1 (5)	600	2
1.3	$Dy_2O_3(1.05)$	560	16
1.4		600	16
2	$Er_2O_3(1.69) + Tb_2O_3(0.35)$	560	16
3.1		520	18
3.2	Ho_2O_3 (1.67)	560	16
3.3		560	48
4	Tb_2O_3 (1.62)	560	16
5.1	$C_{1} O_{1} (1, 4) + U_{2} O_{2} (0, 2)$	520	16
5.2	$Gd_2O_3(1.4) + HO_2O_3(0.3)$	560	16
6	$Yb_2O_3(1.05)+Ho_2O_3(0.32)$	560	48
7.1	$\mathbf{P}: \mathbf{O} (2 0) + \mathbf{V} \mathbf{O} (1 0)$	520	18
7.2	$D_{12}O_{3}(2.0) + Y_{2}O_{3}(1.0)$	600	18

* All samples contain 3.0 mass % of Fe₂O₃

46-я Школа ПИЯФ по ФКС, 12-17 марта 2012, Ленинградская область

Отжиг

Структура отожженных стекол: ТЕМ

Структура отожженных стекол: XRD

Параметр решетки и размер ОКР как функции

состава

Sample	A(Å)	L(Å)
1.1	-	-
1.2	8.331	200
1.3	8.321	220
1.4	8.320	250
2	8.365	270
3.1	8.376	90
3.2	8.363	120
3.3	8.354	165
4	8.323	265
5.1	8.339	140
5.2	8.330	200
6	8.375	160
7.1	8.328	80

Увеличение температуры и продолжительности отжига приводит к росту ОКР

Есть зависимость от типа иона REE и концентрации легирующей добавки

Структура отожженных стекол: SAXS

46-я Школа ПИЯФ по ФКС, 12-17 марта 2012, Ленинградская область

42

Структура отожженных стекол: Fe XANES & EXAFS

Структура отожженных стекол: **REE XANES & EXAFS**

2012, Ленинградская область

Normalized Absorbance, a.u.

44

Нейтрон-поглощающие керамические материалы для корпусов ядерных реакторов

(В.В.Попов, В.Ф. Петрунин, А.П. Менушенков НИЯУ МИФИ)

Золь-гель синтез и контролируемое укрупнение кристаллитов Gd₂Hf₂O₇, DyHfO₅

Влияние температуры отжига на размер кристаллитов

Оценка размера ОКР из полнопрофильного анализа

$Gd_2Hf_2O_7$	a, Å	ОКР,	Микронап-
		HM	ряжения, %
600°C	~5.25	-	-
700°C	5.236(2)	7	0.8
800°C	5.2317(8)	12	1.1
900°C	5.2364(6)	18	1.2
1000°C	5.2396(3)	35	0.8
1200°C	5.2505(2)	160	0.3

DyHfO ₅	a, Å	ОКР,	Микронап-
		HM	ряжения, %
400°C	~5.25	<2	-
600°C	~5.25	<2	-
800°C	5.258(2)	8	1.6
1000°C	5.2570(6)	18	0.6
1200°C	5.2602(2)	62	0.3
1400°C	5.2604(1)	270	0.1
1600°C	5.2622(1)	330	<0.1

Оценка размера частиц из SAXS

Данные EXAFS для Gd₂Hf₂O₇

Gd-O ~2.4 Å Hf-O ~2.1 Å

Для разупоряд. Флюоритной структуры M-O 2.27 Å

Аномальная (резонансная) дифракция

l, a.u.

Прямой учет аномально-дисперсионных поправок

52

Выводы

- Синхротронное излучение мощный инструмент структурной диагностики сложных слабоупорядоченных материалов
- Станция «Структурное материаловедение» в числе других станций КИСИ готова к проведению рутинных исследований (и обладает уникальными в масштабах России опытом и техническими возможностями)
- Мы открыты к сотрудничеству с любыми группами как в вопросах проведения измерений, так и реализации новых методик / модернизации оборудования

<u>Лаборатория структурных исследований некристаллических</u> <u>материалов, Курчатовский НБИК-центр, НИЦ «Курчатовский</u> <u>институт»:</u> Ольга Белякова, Алексей Велигжанин, Елена Гусева, Вадим Мурзин, Евгений Храмов, Альфред Чернышов, Александра Шуленина

