Look at the Earth's Interior with X-rays **Through a Diamond Window**

EUROPEAN SCIENCE FOUNDATION COLABORATIVE RESEARCH

Looking deep into the Earth...

P-and S-wave Pathways Through Earth

Fig. 19.3

Sequence of phase transitions in MgO-SiO₂ system at Earth mantle and transition zone

http://www.le.ac.uk/gl/art/gl209/Image12.gif http://www.physics.ohio-state.edu/~driver/research.html

Mantle velocity profiles and tomography

Takeuchi, N., 2007. J. Int., 169, 1153-1163 www.eri.u-tokyo.ac.jp/takeuchi/model/

Sequence of phase transitions in MgO-SiO₂ system at Earth mantle and transition zone

http://www.le.ac.uk/gl/art/gl209/Image12.gif http://www.physics.ohio-state.edu/~driver/research.html

Diamond Anvil Cell Technique DAC

Courtesy of Guoyin Shen

Figure 8 Computed shear-wave velocities of a model mantle composition (blue), and of the individual phases of the assemblage (green) along the 1600 K adiabat computed self-consistently with the phase equilibria and physical properties according to the method of Stixrude and Lithgow-Bertelloni (2005a). The Voigt–Reuss (red) and Hashin–Shtrikman (blue) bounds on the aggregate velocity are shown. Thin black lines are radial seismological models: (solid) PREM (Dziewonski and Anderson, 1981); (dashed) AK135 (Kennett and Engdahl, 1991). Adapted from Stixrude L and Lithgow-Bertelloni C (2005b) Thermodynamics of mantle minerals. I: Physical properties. *Geophysical Journal International* 162: 610–632.

Saikia et al., PEPI, 2009

Fig. 9. The room pressure isothermal bulk moduli of Fe–Al-bearing MgSiC perovskite single crystals determined in this study using both 2nd (K' = 4; open sta and 3rd (K' > 4; filled stars) order Birch–Murnaghan equations of state, as a functi of total trivalent cation content (i.e., Fe³⁺ + Al³⁺). The results of previous studies on bearing (open symbols) and Fe,Al-bearing powdered perovskite samples (half fill symbols) are shown for comparison. The bulk modulus for pure MgSiO₃ perovsk (filled square) is taken from the single crystal compression study of Vanpeteghe

Courtesy of Guoyin Shen

Courtesy of Guoyin Shen

Large stresses in DACs tend to destroy crystals...

...but quasi-hydrostatic nobel gases (He, Ne) pressure transmitting media preserve them!

Zarechnaya et al., 2010

Dubrovinsky et al., 2004, 2009

ESRF, ID09, 11.2011

ID09a, ESRF 01.11.2011

ω scans -28 -:- 26°

Silicate Perovskite (Mg_{0.63},Fe_{0.37})(Si_{0.63}Al_{0.37})O₃

- Structure and properties of major Earth lower mantle phases
 - (Mg,Fe)O
 - (Mg,Fe)SiO₃
- Single crytal studies at megabar pressure range
- Effect of spin transition in Fe on compositon and dynamics of Earth lower mantle

Thermal EoS of Fp (Mg_{0.8}Fe_{0.2})O

Iron electronic structure

Fe²⁺ (Ar)3s²3p⁶3d⁶

high-spin (HS)

low-spin (LS) Possible effects of Fe²⁺ spin crossover important for geophysics and geochemistry

Density increase – possible discontinuity in seismic profile of the mantle, changes in compressibility.

Red shift of the absorption edge – possible decrease of radiative heat transfer in the mantle.

Rapid change in Fe partitioning between major phases: (Mg,Fe)O ferropericlase and (Mg,Fe)SiO₃ perovskite.

Results: Mössbauer spectroscopy I. Kantor et al., 2007; 2009

(Mg_{0.95}Fe_{0.05})O (Mg_{0.80}Fe_{0.20})O 41 GPa 43 GPa Transmission (arb. units) **Fransmission (arb. units)** 75 GPa 60 GPa 85 GPa 67 GPa 105 GPa 78 GPa -5 -4 -3 -2 -1 0 1 2 3 4 -5 -4 -3 -2 -1 0 1 2 3 4 5 Velocity (mm/s) Velocity (mm/s)

S

Thermal EoS of Fp (Mg_{0.8}Fe_{0.2})O

I. Kantor et al., 2007; 2009

Pressure, GPa

Thermal EoS of Fp (Mg_{0.8}Fe_{0.2})O

Thermal EoS of Fp (Mg_{0.8}Fe_{0.2})O

$(Mg_{0.95}Fe_{0.05})O (Mg_{0.8}Fe_{0.2})O$

Kantor et al. 2007; 2008; 2009

Lin et al., 2007

Mössbauer spectroscopy: Silicate Perovskites

Electronic structure of the 3d orbitals of Fe²⁺ in eight-fold coordination

In a symmetrical ligand environment (a) the five d energy levels are split into three upper (t_{2g}) and two lower (e_g) levels, separated by the crystal field splitting (Δ_c) . A distorted ligand environment further splits the t_{2g} and e_{g} energy levels, and depending on the relative magnitudes of Δ_c , the energy required to pair spins, and the splitting between individual e_g and t_{2g} levels (δ_1 , δ_2 and δ_3), the six 3*d* electrons (arrows) are distributed in different spin states as follows: (b) high-spin Fe²⁺ with 4 unpaired electrons; (c) intermediate-spin Fe^{2+} with 2 unpaired electrons; and (d) low-spin Fe²⁺ with no unpaired electrons. The relative magnitudes of δ_2 and δ_3 and Δ_c can lead to the stabilisation of unusual spin states, such as intermediate-spin Fe²⁺.

Majorite

Silicate Pv

Relative transmission (a.u.)

Majorite

Narygina et al., Phys. Chem. Minerals, 2011

QS(T) = QS(0)
$$\left(\frac{1 - e^{-\Delta_1/kT}}{1 + e^{-\Delta_1/kT}} \right)$$

Narygina et al., Phys. Chem. Minerals, 2011

Potapkin et al., 2011

McCammon et al., 2008; Narygina, 2009, 2010

(Mg_{0.88},Fe_{0.12})SiO₃

 $(Mg_{0.59}, Fe_{0.41})(Si_{0.63}Al_{0.37})O_3$

Thermal EoS of (Mg_{0.88}Fe_{0.12})SiO₃ Pv

Thermal EoS of (Mg_{0.59}Fe_{0.41})(Si_{0.63}Al_{0.37})O₃ Pv

Fe in formula unit

Mantle velocity profiles and tomography

Takeuchi, N., 2007. J. Int., 169, 1153-1163 www.eri.u-tokyo.ac.jp/takeuchi/model/

Conclusions and perspectives

The most reliable information about crystal structures and their response to changes in pressure and temperature is obtained from single crystal diffraction experiments. We have developed a methodology to perform single crystal X-ray diffraction experiments in laser-heated DACs and demonstrated that structural refinements and accurate measurements of the thermal equation of state of metals, oxides, silicates from single crystal intensity data are possible at pressures up to megabars and temperatures of thousands degrees. New methodology was applied to study structural variations in ferropericlase and iron- and aluminum-bearing silicate perovskites at conditions of the Earth's lower mantle.

Acknowledgments: **PhD Students:** K. Glazyrin E. Greenberg E. Holbig I. Kantor A. Kantor J. Liu **O.** Narygina E. Zarechnaya **Post-Docs and AvH Fellows** A. Kurnosov A. Kuznetzov V. Prakapenka J. Rouquette S. Ryosuke C. Wegel X. Wu

I. Abrikosov, LIU G. Aquilanti, ESRF W. Crichton, ESRF N. Dubrovinskaia, UB V. Dmitriev, SNBL M. Hanfland, ESRF C. McCammon, BGI G. Steinle-Neumann, BGI S. Pascarelli, ESRF

Laser heated DAC on ID18 beamline

(Nuclear Inelastic Scattering, NIS)

Dubrovinsky et al., 2009 Glazyrin et al., 2010

Mantle velocity, "Birch law"

Mantle velocity, "Birch law"

hcp-Fe in laser-heated DAC in He

Fe₂O₃ Hematite, R3(-)c Reflections: 45 R1: 4.4%

28.5(3) GPa RT

Fe₂O₃ Hematite, R3(-)c Reflections: 26 R1: 8.8%

31.7(5) GPa 2250(50) K

Extinction symbol : Pbna

Candidate space groups :

Fe₂O₃ **Pbnm**, #62 **Reflections: 55 R1: 21.2%**

H−M symbol	#	Centric	Laue class	М	R(int)	N(obs)	CSD	ICSD	CFOM
Pbna NS	60	yes	mmm	8	0.027	33	1740	193	1.336

-->>> Selected space group = P b n a

- Space groups are described under the Centric designator as :
 yes meaning centrosymmetric
 no meaning non-centrosymmetric with symmetry operators
 of the second kind (i.e. roto-inversions)
 chiral meaning non-centrosymmetric with only symmetry
 operators of the first kind (i.e. rotations & translations)

only space groups in the last category can support crystallisation of enantiomerically-pure configurationally stable chiral molecules, into ordered crystal structures.

40.4(5) GPa 2300(50) K

No. 2 110

111. 111.

R. Boehler, 2009

FIG. 1. (Color online) (A) Schematics of the layout and (B) photograph of the portable laser-heating stand (description see text).

Electrical Heating in DAC Pressure above 300 GPa Temperatures to 1200 K

Silicon detector

Dubrovinskaia and Dubrovinsky, 2003

ID27, ESRF

rotectio

(Mg,Fe)O (Mg,Fe)(Si,Al)O₃

Thermal EoS of (Mg_{0.8}Fe_{0.2})O

Powder Diffraction

External Electrical and Laser Heating

Thermal EoS of (Mg_{0.8}Fe_{0.2})O

Powder Diffraction

External Electrical and Laser Heating

Thermal EoS of (Mg_{0.8}Fe_{0.2})O

Single Crystal Diffraction

External Electrical and Laser Heating

Dubrovinsky et al., 2004

Thermal EoS of Fp

Click Here Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L17307, doi:10.1029/2007GL030712, 2007

Spin transition and equations of state of (Mg, Fe)O solid solutions

Yingwei Fei,¹ Li Zhang,¹ Alexandre Corgne,^{1,2} Heather Watson^{1,3}, Angele Ricolleau,¹ Yue Meng,⁴ and Vitali Prakapenka⁵

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, B10212, doi:10.1029/2006JB004730, 2007

Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowüstites and implications for the seismological properties of the Earth's lower mantle

S. Speziale,^{1,5} V. E. Lee,¹ S. M. Clark,² J. F. Lin,³ M. P. Pastemak,⁴ and R. Jeanloz¹

Elasticity of (Mg,Fe)O Through the Spin Transition of Iron in the Lower Mantle

J. C. Crowhurst, ¹* J. M. Brown, ² A. F. Goncharov, ³ S. D. Jacobsen⁴

Dubrovinsky et al., 2010

Mössbauer spectrometer

Heating assembly for high P, T Mössbauer measurements:

- 1 diamond anvil cell,
- 2 ceramic heater,
- 3 thermocouple,
- 4 platinum wires,
- 5 mica for electrical isolation,
- 6 one Euro coin for scale,
- 7 entire assembly.

Micro-Raman spectrometer

Dubrovinskaia and Dubrovinsky, 2003

Mouse (keyboard): Left(H) - Height, Right(W) - Location Both(X) - exit

Lattice constants are

a = 4.4060(7) b = 4.6310(5) c = 6.3992(9) Alpha = 90 Beta = 90 Gamma = 90 Cell volume = 130.570(31)

Name	×	Y	Z	Ui/Ue*100	Site sym	Mult	туре	Seq Fractn
MG1	0.9820(13)	0.0698(7)	0.250000	8.2(4)	M(001)	4	МĠ	1 0.882(15)
SI2	0.000000	0.500000	0.000000	1.68(19)	-1	4	SI	2 1.0000
03	0.0896(18)	0.4848(19)	0.250000	2.20(31)	M(001)	4	0	3 1.0000
04	0.6923(16)	0.3021(11)	0.0622(12)	1.41(20)	1	8	0	4 1.0000
FE5	0.9820(13)	0.0698(7)	0.250000	3.7(4)	M(001)	4	FE	5 0.118(15)
FE6	0.000000	0.500000	0.000000	2.50	-1	4	FE	6 0.0000

Thermal EoS of (Mg_{0.88}Fe_{0.12})SiO₃ Pv

Simultaneous volume measurements of post-perovskite and perovskite in MgSiO₃ and their thermal equations of state

Tetsuya Komabayashi ^{a,*}, Kei Hirose ^{a,b}, Emiko Sugimura ^a, Nagayoshi Sata ^b, Yasuo Ohishi ^c, Leonid S. Dubrovinsky ^d

Earth and Planetary Science Letters 265 (2008) 515-524

Stable intermediate-spin ferrous iron in lower-mantle perovskite

C. MCCAMMON^{1*}, I. KANTOR^{1†}, O. NARYGINA¹, J. ROUQUETTE^{1†}, U. PONKRATZ², I. SERGUEEV², M. MEZOUAR², V. PRAKAPENKA³ AND L. DUBROVINSKY¹

LETTERS

Crystal Chemistry of Pv

PRL 95, 025503 (2005)

PHYSICAL REVIEW LETTERS

week ending 8 JULY 2005

General Rules for Predicting Phase Transitions in Perovskites due to Octahedral Tilting

R. J. Angel,* J. Zhao, and N. L. Ross

Virginia Tech Crystallography Laboratory, Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24060, USA (Received 29 April 2005; published 8 July 2005)

Recent experiments on several oxide perovskites reveal that they undergo tilt phase transitions to higher-symmetry phases on increasing pressure and that $dT_c/dP < 0$, contrary to a general rule previously proposed for such zone-boundary transitions. We show that the negative slope of the phase boundary is a consequence of the octahedra in these perovskites being more compressible than the extra-framework cation sites. Conversely, when the octahedra are stiffer than the extra-framework cation sites, the phase transition temperatures increase with increasing pressure, $dT_c/dP > 0$.

FIG. 1. Perovskites are comprised of a framework of BX_6 octahedra with A cations (shown as spheres) occupying the interstices within the framework. The aristotype structure is cubic and shows no octahedral tilting (top). If the octahedra are completely rigid, the only way in which the unit-cell volume can be reduced is by introducing tilts of the octahedra (bottom).

FIG. 2. Schematic *P-T* phase diagrams for perovskites. (a) $dT_cdP > 0$ when the octahedra are more rigid than the AX_{12} site. (b) $dT_c/dP < 0$ when the octahedra are less rigid than the AX_{12} site.

and a second a second second

Fig. 9.8. Si-O(2)-Si bond angles for MgSiO₃-perovskite as a function of pressure and temperature. Data points collected at room temperature (red symbols) are from Fiquet *et al.* (2000) and Ross & Hazen (1990); those at high temperature and high pressure (black symbols) are from Fiquet *et al.* (2000).

X-ray Absorption Near-Edge Spectroscopy

research papers

Journal of Synchrotron Radiation

Received 10 December 2008

Development of micro-XANES mapping in the diamond anvil cell

Giuliana Aquilanti,^a* Sakura Pascarelli,^a Olivier Mathon,^a Manuel Muñoz,^b Olga Narygina^c and Leonid Dubrovinsky^c

high pressure

Journal of Synchrotron Radiation

Received 9 June 2009 Accepted 25 September 2009

Portable laser-heating system for diamond anvil cells

L. Dubrovinsky,^a* K. Glazyrin,^a C. McCammon,^a O. Narygina,^a E. Greenberg,^a S. Übelhack,^a A. I. Chumakov,^b S. Pascarelli,^b V. Prakapenka,^c J. Bock^d and N. Dubrovinskaia^e

ID24, ESRF

ñ

2380(70) K

research papers

Journal of Synchrotron Radiation ISSN 0909-0495

Received 10 December 2008

Development of micro-XANES mapping in the diamond anvil cell

Giuliana Aquilanti,^a* Sakura Pascarelli,^a Olivier Mathon,^a Manuel Muñoz,^b Olga Narygina^c and Leonid Dubrovinsky^c

high pressure

Journal of Synchrotron Radiation

Received 9 June 2009 Accepted 25 September 2009

Portable laser-heating system for diamond anvil cells

L. Dubrovinsky,^a* K. Glazyrin,^a C. McCammon,^a O. Narygina,^a E. Greenberg,^a S. Übelhack,^a A. I. Chumakov,^b S. Pascarelli,^b V. Prakapenka,^c J. Bock^d and N. Dubrovinskaia^e

Single Crystal Diffraction at Megabar Pressure Range

- High-Temperature
- (a) External electrical heating

(b) Laser heating

Cr2O3

McCammon et al., 2008; Narygina, 2009, 2010

Crystal Chemistry of Pv

2000 K

1900 K

Pressure, GPa

N. DUBROVINSKAIA[†][‡], I. GONCHARENKO[§], A. KANTOR[†], A RUTANETROVAL and W ODICUTONI

Glazyrin et al, 2010

© by Oldenbourg Wissenschaftsverlag, München

Monoclinic FeO at high pressures

Innokenty Kantor*,1,II, Alexander Kurnosov^I, Catherine McCammon^I and Leonid Dubrovinsky^I

Fig. 1. Pressure evolution of the cubic 220 reflection. Left – cubic phase at 11.6 GPa (just below the trigonal distortion pressure). Middle – trigonal phase at 24.6 GPa with two reflections (104 and 110 in the trigonal setting). Right – monoclinic phase at 75.5 GPa with five reflections (111, $\overline{2}02$, $\overline{1}02$, 020, and $\overline{3}11$).

75(1) GPa After laser heating

LETTERS

Stable intermediate-spin ferrous iron in lower-mantle perovskite

C. McCAMMON^{1*}, I. KANTOR^{1†}, O. NARYGINA¹, J. ROUQUETTE^{1†}, U. PONKRATZ², I. SERGUEEV², M. MEZOUAR², V. PRAKAPENKA³ AND L. DUBROVINSKY¹

Figure 3 Estimated Fe²⁺ spin-state distribution in the lower mantle. a, Silicate perovskite variation estimated from our data, previous XES data^{1,2} and current thermal models¹⁷⁻¹⁹. The greatest contrast occurs in the uppermost region, and no spin transition is expected at the base of the mantle in the postperovskite phase¹⁰. b, (Mg,Fe)O variation on the basis of previous data²⁶ shows the greatest contrast in spin state to occur in the middle part of the lower mantle. Slab mineralogy excludes (Mg,Fe)O and the temperature effect is small in the uppermost and lowermost regions of the lower mantle²⁶.

Mantle velocity profiles and tomography

Dziewonski and Anderson (1981)

Trampert et al. 2004

www.eri.u-tokyo.ac.jp/takeuchi/model/

Possible effects of Fe²⁺ spin crossover important for geophysics

Rapid change in Fe partitioning between major phases: (Mg,Fe)O ferropericlase and (Mg,Fe)SiO₃ perovskite.

2 MAY 2003 VOL 300 SCIENCE www.sciencemag.org

Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity

James Badro,¹ Guillaume Fiquet,¹ François Guyot,¹ Jean-Pascal Rueff,² Viktor V. Struzhkin,³ György Vankó,⁴ Giulio Monaco⁴

"... at pressures greater then 70 GPa or at depths greater than 2000 km, perovskite would then be completely ironfree, and any iron would be transferred into ferropericlase"

Fe-Mg partitioning between (Mg, Fe)SiO₃ post-perovskite, perovskite, and magnesiowüstite in the Earth's lower mantle

Yusuke Kobayashi,¹ Tadashi Kondo,¹ Eiji Ohtani,¹ Naohisa Hirao,¹ Nobuyoshi Miyajima,² Takehiko Yagi,² Toshiro Nagase,³ and Takumi Kikegawa⁴

Figure 3. Pressure versus Fe-Mg partition coefficients between Pv and Mw, $K^{Pv/Mw} = (FeO/MgO)_{Pv}/(FeO/MgO)_{Mw}$, and PPv and Mw, $K^{PPv/Mw} = (FeO/MgO)_{PPv}/(FeO/MgO)_{Mw}$ compared with previous studies. Open and solid circles represent K values in this study from XRD and ATEM, respectively. Open diamonds, *Mao et al.* [1997] at 1500 K; open squares, *Andrault* [2001] at 2200 K; plus, *Kesson et al.* [2002]; open triangles, *Murakami et al.* [2005]. All K values in this figure have been obtained from Al-free system except *Murakami et al.* [2005].

Figure 4. Total X [FeO/(FeO + MgO) in molar ratio] calculated from each X of PPv or Pv and Mw. Open and solid circles represent total X obtained from XRD and that from ATEM, respectively.

Fig. 2. TEM micrographs of mineralogical assemblages synthesized in a laser-heated diamond anvil cell at high pressures and high temperatures along the Earth geotherm. a) Amorphous pv and fp grains in Pv-04 synthesized at 72 GPa, b) same assemblage in a run conducted at 115 GPa, enlightening the pressure effect on the grain size, c) equilibrium texture in Pv-06, d) Amorphous pv showing the ghosts of the twin structures.

Fig. 4. Fe–Mg exchange coefficients between pv (or ppv) and fp plotted as a function of pressure. The coefficients published by Murakami et al. (2005) and Kobayashi et al. (2005) are reported for information. The three grey-shaded fields emphasize the stability fields of the successive coexisting phases: HS or LS fp+pv (Badro et al., 2003) and LS fp+ppv (Murakami et al., 2004).

Pressure (GPa)

Table 1	
Experimental	conditions

0,0

Run	Р	Т	Duration of heating [at peak T]
	(Gpa)	(K)	(min)
Pv_08	55	2450	23 [18]
Pv_05	63	2450	11 [5]
Pv_04	72	2000	27 [9]
Pv_06	78	2200	11 [7]
Pv_13	100	2150	24 [11]
Pv_14	115	2200	7 [6]

ID24: Energy dispersive XAS beam-line at ESRF

The complete optical scheme adopted on ID24, consisting in a pair of mirrors in a Kirkpatrick Baez geometry (VFM1 and HFM) and the polychromator (PLC). A second vertically focusing mirror (VFM2) downstream the polychromator is used to refocus the beam on the sample

24-26 GPa

 $(Mg_{0.88}Fe_{0.12})O (Mg_{0.88}Fe_{0.12})SiO_3 (Mg_{0.86}Fe_{0.14})(Si_{0.975}Al_{0.025})O_3 (Mg_{0.80}Fe_{0.20})O$

P ~ 100 GPa P ~ 105 GPa P ~ 90 GPa

(Mg_{0.95}Fe_{0.05})O (Mg_{0.80}Fe_{0.20})O

(Mg_{0.88}Fe_{0.12})O (Mg_{0.80}Fe_{0.20})O

Kantor et al., 2007 Narygina et al., 2008

(Mg_{0.88}Fe_{0.12})SiO₃

$(Mg_{0.86}Fe_{0.14})(Si_{0.975}Al_{0.025})O_3$

M. Munoz et al., 2008

Steps Along X axis

RP

Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity

James Badro,¹ Guillaume Fiquet,¹ François Guyot,¹ Jean-Pascal Rueff,² Viktor V. Struzhkin,³ György Vankó,⁴ Giulio Monaco⁴

"... at pressures greater then 70 GPa or at depths greater than 2000 km, perovskite would then be completely iron-free, and any iron would be transferred into ferropericlase"

Figure 3. Pressure versus Fe-Mg partition coefficients between Pv and Mw, $K^{Pv/Mw} = (FeO/MgO)_{Pv}/(FeO/MgO)_{Mw}$, and PPv and Mw, $K^{PPv/Mw} = (FeO/MgO)_{PPv}/(FeO/MgO)_{Mw}$ compared with previous studies. Open and solid circles represent K values in this study from XRD and ATEM, respectively. Open diamonds, *Mao et al.* [1997] at 1500 K; open squares, *Andrault* [2001] at 2200 K; plus, *Kesson et al.* [2002]; open triangles, *Murakami et al.* [2005]. All K values in this figure have been obtained from Al-free system except *Murakami et al.* [2005].

Fig. 4. Fe–Mg exchange coefficients between pv (or ppv) and fp plotted as a function of pressure. The coefficients published by Murakami et al. (2005) and Kobayashi et al. (2005) are reported for information. The three grey-shaded fields emphasize the stability fields of the successive coexisting phases: HS or LS fp+pv (Badro et al., 2003) and LS fp+ppv (Murakami et al., 2004).

Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity

James Badro,¹ Guillaume Fiquet,¹ François Guyot,¹ Jean-Pascal Rueff,² Viktor V. Struzhkin,³ György Vankó,⁴ Giulio Monaco⁴

"... at pressures greater then 70 GPa or at depths greater than 2000 km, perovskite would then be completely iron-free, and any iron would be transferred into ferropericlase"

GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L19301, doi:10.1029/2005GL023257, 2005

Fe-Mg partitioning between (Mg, Fe)SiO₃ post-perovskite, perovskite, and magnesiowüstite in the Earth's lower mantle

Yusuke Kobayashi,¹ Tadashi Kondo,¹ Eiji Ohtani,¹ Naohisa Hirao,¹ Nobuyoshi Miyajima,² Takehiko Yagi,² Toshiro Nagase,³ and Takumi Kikegawa⁴

Figure 4. Total X [FeO/(FeO + MgO) in molar ratio] calculated from each X of PPv or Pv and Mw. Open and solid circles represent total X obtained from XRD and that from ATEM, respectively.

EPSL-09155; No of Pages 11

ScienceDirect

ARTICLE IN PRESS

EPSL

Earth and Planetary Science Letters xx (2008) xxx-xxx

www.elsevier.com/locate/eps

Element partitioning between magnesium silicate perovskite and ferropericlase: New insights into bulk lower-mantle geochemistry

Anne-Line Auzende ^{a,*}, James Badro ^{a,b}, Frederick J. Ryerson ^b, Peter K. Weber ^b, Stewart J. Fallon ^b, Ahmed Addad ^c, Julien Siebert ^b, Guillaume Fiquet ^a

^b IPGP, IMPMC, Université Paris VI & Paris VI, CNRS, Department of Mineralogy, campus Bouckaut, 140 rue de Lournel, 75015 Paris, France ^b LLNL, Energy and Environment, Experimental geophysics, University of California, Livermore, CA 94550, United States ^c LSPES, CNRS, Université des Sciences et Technologies de Lille, Cité scientifique, 59655 Villeuneuve d'Ascq. France

Received 12 July 2007; received in revised form 18 January 2008; accepted 3 February 2008

Olivine (Mg_{0.88}Fe_{0.12})₂SiO₄, Laser heated at 52 GPa and 2300 K

Mouse (keyboard): Left(H) - Height, Right(W) - Location Both(X) - exit

Rw+Graphite, laser-heated at 35(3) GPa and 2200(100) K

Mouse (keyboard): Left(H) - Height, Right(W) - Location Both(X) - exit

Mouse (keyboard): Left(H) - Height, Right(W) - Location Both(X) - exit

 $[MgSiO3]^{Pv} + [FeO]^{Fp} < --> [FeSiO3]^{Pv} + [MgO]^{Fp}$

 $R T \ln K_{\rm D} = -\Delta H + T \Delta S - P \Delta V$

Edge-jump map

Absorbance map at 7130.9636 eV

Fe K-edge XANES spectra of (Mg,Fe)O and FeO. a) Fe5 sample after compression; b) Fe13 sample after compression; c) Fe25 sample after compression; d) FeO wüstite sample. e) starting Fe13 material. The arrow indicates the region of major changes in the XANES spectra.

Pressure dependence of the quadrupole splitting of Fe5 and Fe20 samples (a and b, respectively). Black triangles pointing to the right are compression points, while white triangles pointing to the left are decompression points.

Kantor et al., 2007; 2008

Stability and Phase Transition(s)

Science 22 November 1996: Vol. 274. no. 5291, pp. 1357 - 1359 DOI: 10.1126/science.274.5291.1357 < Prev | Table of

ntensity (a.u.)

REPORTS

Stability of Perovskite (MgSiO₃) in the Earth's Mantle

Surendra K. Saxena, Leonid S. Dubrovinsky, Peter Lazor, Yngve Cerenius, Patrik Häggkvis Michael Hanfland, Jingzhu Hu

Science 23 June 1995: Vol. 268. no. 5218, pp. 1743 - 1745 DOI: 10.1126/science.268.5218.1743

ARTICLES

High-Temperature Phase Transition and Dissociation

Perovskite at Lower Mantle Pressures

Charles Meade ¹, Ho Kwang Mao ¹, and Jingzhu Hu ¹

Science 28 September 2001: Vol. 293. no. 5539, pp. 2437 - 2440 DOI: 10.1126/science.1061235

D. Andrault, 2007

< Prev | Table of Contents |

REPORTS

Stability and Structure of MgSiO₃ Perovskite to 2300-Kilometer Depth in Earth's Mantle

Sang-Heon Shim,^{1*†} Thomas S. Duffy,¹ Guoyin Shen²

Results: optical absorption spectroscopy

Optical absorption spectroscopy: literature data

Reduced Radiative Conductivity of Low-Spin (Mg,Fe)O in the Lower Mantle A. F. Goncharov, V. V. Struzhkin, S. D. Jacobsen SCIENCE 312, 1205 (2006)

Pressure (GPa)

(Mg0.85Fe0.15)O, 85-90 GPa

(Mg0.875Fe0.125)O

Pressure, GPa

ЭO

Pressure, GPa

