

DIFFRACTION STUDIES OF ICE

Alexeï BOSAK

European Synchrotron Radiation Facility

Ice as the mild threat

ice Ih the only ice in the crust

PROBLEMS

NO MATTER HOW GREAT AND DESTRUCTIVE YOUR PROBLEMS MAY SEEM NOW, REMEMBER, YOU'VE PROBABLY ONLY SEEN THE TIP OF THEM.

European Synchrotron Radiation Facility

Ice as the absolute weapon

Ice IX : melting point 45.8°C at ambient pressure

- more stable polymorph of water than common ice (Ice Ih), but with large activation barrier
- liquid water below 45.8°C is effectively supercooled
- in contact with liquid water Ice IX acts as a seed crystal, and causes the solidification of the entire body of water which quickly crystallizes as ice-nine

[K. Vonnegut, Cat's Cradle]

Phase diagram of water

Phase diagram of water

Experiment: neutrons vs. X-rays

2012: 100 years of x-ray diffraction

Относительно природы Рентгеновских лучей до сих пор ничего неизвестно. Было высказано предположение, что Рентгеновские лучи представляют собой продольные колебания эфира. Эту идею разделял сам Рентген. Однако, никаких данных, подтверждающих такую гипотезу, не имеется.

Энциклопедия Брокгауза Ф.А. и Ефрона И.А. (1899)

Friedrich & Knipping's first successful diffraction photograph (1912)

2012: 80 years since the discovery of neutrons

1932: discovery of neutrons (Chadwick)

1945/46: first diffraction patterns (Wollan, Sawyer, Shull)

confirmation of half-hydrogen model of Pauling

Contrast in neutron and x-ray scattering

X-rays: f ~ Z f(O)/f(H) ~ 8

neutrons [barns]: $\sigma_{coh}(H) = 1.76 \ \sigma_{inc}(H) = 79.9$ $\sigma_{coh}(D) = 5.59 \ \sigma_{inc}(D) = 2.04$ $\sigma_{coh}(O) = 4.23 \ \sigma_{inc}(O) \sim 0$

the most convenient: D_2O with neutrons?

neutrons

+

+

High pressure studies

X-rays

+

+

ex situ quenched phases *in situ* sapphire anvil cell *in situ* diamond anvil cell

Ambient pressure polymorphs

Building the ice Ih crystal

take the wurtzite

replace all the atoms by oxygen

put in the hydrogen atoms randomly but according to the rules

Bernal-Fowler rules:

- 1. four hydrogen-bonded neighbors for each water molecyle
- 2. two hydrogen atoms near each oxygen
- 3. one hydrogen atom on each O...O bond

Building the ice Ic crystal

take the sphalerite...

condensation of vapor below -80°C freezing small droplets (~6 mkm) transformation of HP ices always metastable

Ice Ic in nature?

22° - the commonest of the halos

Ice Ic in nature?

22° - the commonest of the halos

Scheiner's sketch of his observation made on 20.03.1629 at Rome

Cooling down to order the hydrogen?

for the transition temperature the activation barrier is too high geological samples for that temperature cannot be found on the Earth

introduce the defects to increase the mobility! KOH doping induces the ordering below 72 K: polar structure with Cmc2₁ space group

High pressure polymorphs

Ice II: clathrate-like

- 25% denser that ice Ih, but with larger cavities
- same H₂O framework as for helium hydrate stabilized by He
- the only proton-ordered ice forming from the liquid
- 6,8,10-rings

Ices III and IX: chiral

- take the keatite (SiO₂) or Ge-III
- replace all the atoms by oxygen
- add hydrogen respecting the rules
 - random -> ice III
 - ordered -> ice IX (harmless)

the only ices with chiral structure - can be left or right
5,7,8-rings

Ices XII and XIV: dense but simple

- random -> ice XII
- ordered -> ice XIV

- protons are quite far from 0...0 line
- 7,8-rings

Ice IV: self-entangled/knot

- much easier to obtain from D_2O
- 6,8,10-rings

• ordered form is not known yet

Ices V and XIII: self-entangled/knot

• ice V (disordered) and XIII (ordered) contain 28 water molecules

• 4,5,6,8,9,10,12-rings

Ices VI and XV: self-clathrate

- take the edingtonite mineral
- replace Si and Al the atoms by oxygen
- take the second network and entangle both
- add hydrogen respecting the rules
 - random -> ice VI
 - ordered -> ice XV
- two subnetworks are not H-bonded
- 4,8-rings

Ices VII, VIII and X: self-clathrate

- take Cu₂O structure
- replace Cu by hydrogen
 - ice X
- shift hydrogen respecting the rules
 - random -> ice VII (cubic)
 - ordered -> ice VIII (tetragonal)

- two subnetworks are not H-bonded
- 6-rings

Proton ordering in ice polymorphs

Proton-disordered modifications	Corresponding proton-ordered modifications
Ice Ih	Ice XI
Ice Ic	
	Ice II
Ice III	Ice IX
Ice IV	
Ice V	Ice XIII
Ice VI	Ice XV
Ice VII	Ice VIII
Ice XII	Ice XIV

H⁺ or OH⁻ doping can be indispensible to produce the ordered phase

Diffuse scattering on ice

Moderate experimental matherial

diffuse x-ray scattering: the first and the last experiment in 1949 [*P. G. Owston, Acta Cryst.* 2, 222-228 (1949)]

diffuse neutron scattering: [J.-C. Li et al., Phil. Mag. B 69 1173 (1994)] interpretation is questionable

Exotic samples of common substance

natural single crystals from Vostok station depth: 3650 m typical size: 1 m

Data collection

SNBL at ESRF and follow-up ID29 at ESRF

3600 images / angular step 0.1°80 Gb of raw data (20 Gb compressed)

15 min of data collection

ESRF

PILATUS 6M / Dectris

2D patterns \rightarrow 3D sphere space filling flat image MAR EDF BSL CBF . . . CCP4 map format VRML X3D **UCSF** Chimera **POV-Ray**

Diffuse x-ray scattering in Ih ice

Diffuse x-ray scattering in Ih ice

ID29@ESRF

ice Ih 175 K

Lattice dynamics: ice XI ab initio

$Cmc2_1$

orthorhombic but metrically close to the hexagonal

CASTEP package DFT calculation (B. Wehinger)

output:

eigenvalues and eigenfrequencies for all the phonons at any **q**

->

dynamical structure factor

Inelastic spectra: appearence and interpretation

about the same formalism for neutron and x-ray inelastic scattering

A light for science

First data on phonon dispersion / ID28

path **b**

ice Ih 175 K

A light for science

First data on phonon dispersion / ID28

path a

ice Ih 175 K

First data on phonon dispersion / ID28

ice Ih 175 K

inelastic scattering is largely dominating

Phonon dispersion: experiment vs. calculation

European Synchrotron Radiation Facility

X-ray thermal diffuse scattering: modelling

CASTEP package + ESRF developments

B. Wehinger, A. Mirone

European Synchrotron Radiation Facility

Hydrogen in the inelastic x-ray scattering

the same acoustic phonons are much weaker for (004-x) than for (004+x)

 the asymmetry disappears if the scattering from hydrogen is switched off

Imaging the disorder?

Disorder-related diffuse scattering

ρ with occupation disorder = $\Delta \rho \rightarrow$ diffuse scattering + $\langle \rho \rangle \rightarrow$ Bragg scattering

Disorder-related diffuse scattering

$$I_{diff}(\mathbf{Q}) = I_{tot}(\mathbf{Q}) - I_{Bragg}(\mathbf{Q})$$

 $I_{tot}(\mathbf{Q}) = \sum_{i} \sum_{j} f_{i}(\mathbf{Q}) f_{j}^{*}(\mathbf{Q}) \exp\left(2\pi i \mathbf{Q} \left(\mathbf{R}_{i} - \mathbf{R}_{j}\right)\right)$ $I_{Bragg}(\mathbf{Q}) = \sum_{i} \sum_{j} f_{ave}(\mathbf{Q}) f_{ave}^{*}(\mathbf{Q}) \exp\left(2\pi i \mathbf{Q} \left(\mathbf{R}_{i} - \mathbf{R}_{j}\right)\right)$ $I_{diff}(\mathbf{Q}) \approx \sum_{i} \sum_{j} (f_{ave}(\mathbf{Q}) - f_{i}(\mathbf{Q})) (f_{ave}^{*}(\mathbf{Q}) - f_{j}^{*}(\mathbf{Q})) \exp\left(2\pi i \mathbf{Q} \left(\mathbf{R}_{i} - \mathbf{R}_{j}\right)\right)$

Building the disorder

European Synchrotron Radiation Facility

Disorder in ice Ih

arrangement of atoms is still governed by ice rules

- can we see that with x-ray diffuse scattering?

O <u>ESRF</u>

Data manipulation & modelling

ORNL's Petascale Jaguar Supercomputer

European Synchrotron Radiation Facility

Fast&easy approach

- limit the displacements by the discrete set (32 for H and 48 for O)
- generate the binary arrays 0/1 for all the lattices
- take the fast fourier transform FFT(NInN instead of N²!)
- sum up the FFTs with corresponding structure factors
- take the square to get the intensity

~5 s for the array generation ($2^{21} = 2097152$ water molecules)

<10 s for 1 reciprocal cell unit (including f(Q)exp(-2W(Q)) generation)

repeat the generation of model crystal if less noice is needed

Model 3D neutron scattering from ice Ih

4 hours of single-core processor

4 clusters generated

Dynamic and static components of diffuse scattering

HK0

Dynamic and static components of diffuse scattering

static component is strong exactly where thermal diffuse scattering is strong \Rightarrow diffuse x-ray scattering is useless in the study of static disorder in ice

components can be separated only in the inelastic scattering

ESRF Christmas card 2012 !!

experiment

ice rules model

Diffuse neutron scattering in ice Ih

Time-of-flight Laue diffraction / ISIS [V.M. Nield et al., Acta Crys. A 51, 763 (1995)]

orthorhombic settings

European Synchrotron Radiation Facility

Interpretation

Bernal-Fowler rules only

extra feature

reverse Monte-Carlo calculation produces the additional correlated displacement

Ice rules only

Ice rules only

Thermal diffuse scattering only

Thermal diffuse scattering only

Total scattering

scattering pattern is better described by the sum of disorder and dynamics than by artificially introduced correlated displacements

Less clear observations

Anti-nodes of diffuse scattering

diffuse scattering "anti-nodes" are due to large-distance-forbidden configurations?

Similarity to the spin ice

Ho₂Ti₂O₇ neutrons spins ice Ih X-rays oxygen shifts

More suspicious similarity

ice Ih X-rays oxygen shifts

AgI thermal diffuse scattering ice Ih pseudo-TDS

static disorder

nearly flat TA dispersion

TA phonons only n(E)/E switched off

spin ice description in terms of "dynamical matrix"?

European Synchrotron Radiation Facility

What else?

Ice + something else

water + something + HP and/or LT -> clathrates

sII

sH

small molecules

larger molecules ...or very small even larger molecules

Crystallography of natural air hydrates

Dye-3, Greenland, 1500 m [T. Hondoh et al., Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 8, 17 (1990)]

structure of type II

Vostok station ice core

no crystallographic information available

[V.Ya. Lipenkov, Physics of Ice Core Records, Ed. T. Hondoh, Hokkaido University Press, 2000]

Many ambitious tasks remaining

THE JOURNEY OF A THOUSAND MILES SOMETIMES ENDS VERY, VERY BADLY.

European Synchrotron Radiation Facility

Many ambitious tasks remaining

THE JOURNEY OF A THOUSAND MILES SOMETIMES ENDS VERY, VERY BADLY.

So it goes.

[K. Vonnegut, Slaughterhouse-Five]

European Synchrotron Radiation Facility

A light for science

Diffuse x-ray scattering from a single crystal of antarctic ice extracted from the Antarctic ice sheet at a depth of 3.5 km, above the large subglacial Lake Vostok. Data taken at ID29 using a Pilatus detector. Simulation of the x-ray scattering data from the intrinsic static disorder managed by «ice rules».

A. Bosak, D. Chernyshov, A. Popov, D. De Sanctis, S. Bulat, V. Ezhov

Best wishes for the Holiday Season and the New Year

O <u>ESRF</u>

Data manipulation & modelling

ORNL's Petascale Jaguar Supercomputer

European Synchrotron Radiation Facility