

Interaction of X-rays with matter

A. Rogalev

European Synchrotron Radiation Facility (ESRF), Grenoble, France

"That there are known knowns - there are things we know that we know"

"There are known unknowns - that is to say there are things we now know we don't know"

"But there are also unknown unknowns - there are things we do not know we don't know."

Empirio-Criticism

Critical Comments on A Reactionary Philosophy

Vladimir I. Lenin

It is easy to show that $\Delta\mu(\hbar\omega) \propto \sum_{b,\beta} (-1)^{\beta} T_{\beta}^{(b,\beta)}(\varepsilon,\varepsilon^*,k) \otimes Q_{-\beta}^{(b,\beta)}(\hbar\omega)$

In 1895 Dr. W.K.Röntgen has discovered "Eine Neue Art von Strahlen"

Ucher eine hene Ort von Strahlens Vor W. C. Röntgen. (Votanfige Mitteilung) 1. Laeut man darce eine Kittorf 'sche Vaccum. Köhne, ober einen gemigen evacuioten Renard' schen, Crooken 'schen oder klundichen Apparat die Enstadungen eines größeren Ruhmworff's gehen und hedeckt ster Unstaden Apparat suit einem Reimelrte eug anliegenden Mendel eus dümen schwarten Carton, so sicht man in dem valle. Ständig verdunkelten Lümmer einen in den valle. Ständig verdunkelten Lümmer einen is dei Vähn des Apparates gebracesten, hurt Bareiun platineysnüss Augestrichenen Fapierstehen, gleichgutetig ob die augestrichene oher die andere Seit des Schimmes dum Entladungs apparat Augemendet urt. Stei Fluoreseure ist enoch in 2 m Entgennung vom

Apparat beinevabar.

Man über reugt wire bevont, dass die Urraden der Fluoreseeur vom Frusern des Puttadeursapparaten und vom Keine anderen Helle der Leitung ausgeht.

On December 28, 1895 W.C. Röntgen had submitted his manuscript "On a New Kind of Ray, A Preliminary Communication" to the Würzburg Physical Medical Society. On the 1st of January 1896 he sent copies of his manuscript to several renowned physicists.

Comptes rendus hebdomadaires des séances de l'Académie des sciences Séance du lundi 23 Mars 1896

(717)

» J'ai employé le dispositif de la chambre noire.

» Un trou de petit diamètre (1^{mm}), percé dans une plaque de laiton, située à quelques centimètres du tube, permettait d'obtenir l'image des régions actives sur une plaque photographique placée au delà.

» Je vérifiai d'abord ainsi que les parties utiles de la plaque sont bien celles que frappent les rayons cathodiques.

» Puis je disposai sur le trajet de ces rayons un obstacle en aluminium de forme simple (étoile ou croix); l'image de cet obstacle apparut très intense. Elle n'apparut pas lorsque, au moyen d'un aimant, on empêcha les rayons cathodiques de tomber sur Pobstacle.

» Cet obstacle pouvait d'ailleurs être pris comme anode : cela ne changea rien à aucun de ces deux résultats.

» L'expérience réussit également bien avec des corps moins perméables aux rayons X que l'aluminium et le verre, tels que le cristal et le platine. Pour le montrer, j'ai construit un tube en verre transparent aux rayons X, et, à l'intérieur de ce tube, je plaçai un obstacle mi-partie en platine, mi-partie en cristal. Naturellement la plaque photographique fut disposée de manière à recevoir les rayons X émis par celle des faces de l'obstacle que frappaient les rayons cathodiques. Les images obtenues furent encore nettes et très intenses.

» Dans aucune de ces expériences, la cathode ne donna son image.

» En résumé, aux points où une matière quelconque arrête les rayons cathodiques, se développent des rayons de Röntgen, et il ne paraît pas s'en développer en d'autres points.

» Ces rayons divergent dans toutes les directions; seulement certaines substances, telles que le cristal, les absorbent rapidement; on comprend ainsi pourquoi les tubes en cristal ont un rendement faible, quoique la production y soit intense. Toute l'importance pratique des tubes à fluores cence verdâtre résulte de la transparence du verre dont ils sont formés (⁺). »

PHYSIQUE. – Recherches concernant les propriétés des rayons X. Note de MM. le Prince B. GALITZINE et A. DE KARNOJITZKY, présentée par M. L. Cailletet. (Extrait.)

« En poursuivant, avec de nouveaux tubes de Crookes, de formes diverses, les recherches que nous avons déjà soumises à l'Académie, nous avons obtenu de nouvelles photographies d'après lesquelles les centres d'émission des rayons X sont nettement caractérisés.

(1) Travail fait au Laboratoire de Physique de l'École Normale.

(718)

» D'après l'ensemble de nos recherches, l'existence, dans quelques cas, d'un centre d'émission d'origine anodique semble être mise désormais hors de doute. On observe en outre quelquefois que, si l'on intervertit l'anode et la cathode, le nouveau centre anodique se produit là où se trouvait auparavant le centre cathodique, mais ce dernier est toujours plus intense.

» Pour expliquer l'ensemble des faits observés, nous avons, dans notre Note précédente, proposé l'hypothèse des foyers, qui semble bien correspondre à tous les détails de nos expériences et qui, d'ailleurs, est d'accord avec ce fait, que les centres d'émission se trouvent d'ordinaire dans le voisinage de l'endroit où le verre du tube de Crookes devient fortement fluorescent, vu que c'est précisément là que l'action des rayons cathodiques se concentre. C'est cette hypothèse qui nous paraît offrir le plus de vraisemblance....

» Il se présente une autre question. Les rayons X correspondent-ils à des vibrations longitudinales ou à des vibrations transversales? Cette question pourrait être tranchée si l'on pouvait démontrer qu'ils se polarisent.

» Les premieres recnerches que nous avons entreprises à ce sujet ont échoué. Nous avons alors fait préparer trois petites plaques de tourmaline très minces (environ σ^{mm} , 5 d'épaisseur). Sur la plus grande se posaient les deux autres, une parallèlement et l'autre perpendiculairement à la première. S'il y a polarisation là où les plaques sont croisées, on doit s'attendre à voir l'action des rayons X affaiblie. Il va sans dire que l'action de la lumière ordinaire a été exclue et qu'on a changé plusieurs fois la position relative des petites plaques, afin d'éliminer toute influence d'inégale épaisseur ou de manque d'homogénéité. Dans les huit épreuves obtenues, on peut distinguer que là où les plaques ont été croisées l'action photochimique des rayons X a été moindre (').

» On peut en conclure que les rayons X se polarisent et, par suite, qu'ils correspondent à des vibrations transversales. »

(¹) Pour renforcer ces épreuves, nous avons eu recours à M. Bourinsky, qui a récemment indiqué une méthode ingénieuse pour renforcer les négatifs faibles, méthode basée sur le principe de la superposition des pellicules (voir Bulletin de l'Académie impériale des Sciences de Saint-Pétersbourg, nº 4, avril 1895). La différence des teintes a été mise ainsi hors de doute, comme on peut le voir sur les épreuves que nous avons l'honneur de soumettre à l'Académie.

C.R. Acad.Sci. Paris 122 (1896) 717-718

Comptes rendus hebdomadaires des séances de l'Académie des sciences Séance du lundi 30 Mars 1896

(783)

PHYSIQUE. – Sur la diffraction et la polarisation des rayons de M. Röntgen. Note de M. G. SAGNAC, présentée par M. Lippmann.

« I. Pour obtenir, avec un réseau par transmission à intervalles égaux, des images réelles d'une fente lumineuse (¹), on placerait ce réseau en avant d'une image réelle fournie par un faisceau convergent. On ne peut le faire avec les rayons de M. Röntgen, qui divergent à l'extérieur du tube de Crookes et pour lesquels on ne possède pas de lentilles. Pour obtenir des images réelles d'une fente, j'ai diaphragmé par une seconde fente, derrière laquelle est placé le réseau, l'entrée d'une grande chambre noire.

» J'ai employé un réseau de $\frac{1}{10}$ de millimètre, construit par M. Gaiffe avec des fils de platine de près de $\frac{1}{20}$ de millimètre de diamètre. La partie inférieure d'un faisceau *lumi*neux défini par deux fentes métalliques distantes de 7^{cm}, 5 passe au-dessous de la monture métallique du réseau et forme sur le verre dépoli de la chambre noire, à 35^{cm} au delà du réseau, une image réelle de la première fente. La partie supérieure du même faisceau traverse à 2^{cm}, 5 derrière la seconde fente le réseau placé sous l'incidence de 45°, ce qui augmente ici les déviations et les intensités des faisceaux diffractés. Ces derniers ajoutent à l'image directe autant d'images diffractées dont quatre surtout sont bien nettes. Ces cinq images de la première fente supposée peu étroite (1^{mm}) se renforcent en se superposant en partie et forment ainsi une image d'aspect cannelé, plus large de 7^{mm} environ que l'image inférieure sans diffraction.

» Cela suffit pour conclure : Les rayons de Röntgen qui ont impressionné la plaque sensible à travers le volet de bois du châssis ne possèdent pas de longueurs d'onde supérieures à 4 centièmes de micron (').

» II. Les rayons de M. Röntgen sont-ils liés à un vecteur soit longitudinal, soit transversal et, dans ce dernier cas, comment les polariser?

» On ne peut songer actuellement à les polariser par réflexion, ni par réfraction, ni sans doute par diffraction. L'émission et la diffusion seraient peut-être à essayer. Il est, en tout cas, plus simple de tenter de les polariser par absorption. (785)

chroïsme. La plage des sections principales parallèles laisse passer une intensité dont l'excès sur celle de l'autre plage est mesuré par $(o^2 - e^2)^2$.

» D'ailleurs pour les différences (o - e), de signes peut-être différents, relatives à différentes longueurs d'onde, les différences d'intensité correspondantes s'ajoutent toujours en faveur de la plage où les sections principales sont parallèles.

» J'ai recherché si l'effet se produit avec les rayons de M. Röntgen en disposant de tels systèmes de trois lames sur le double de papier noir qui recouvre la plaque sensible. Le temps de pose s'est élevé jusqu'à plusieurs heures. Les clichés obtenus *avec l'intensité désirable* n'ont pas révélé de dichroïsme sensible :

Corps employés.	Quartz.	Spath.	Tourmalines brunes (1).	Mica.	Ferrocyanure de potassium.
Epaisseurs de chaque lame.	omm, 03	o ^{mm} ,4	o ^{mm} ,5	0 ^{mm} , 2	o ^{mm} ,4 à 2 ^{mm}

» Une précaution est indispensable pour éliminer l'influence d'une petite différence de nature comme il est arrivé pour les tourmalines : on fait tourner de go^o sur place chacune des deux demi-lames supérieures de manière que les plages des sections principales parallèles et des sections croisées s'échangent mutuellement. Une différence d'intensité due au dichroïsme doit suivre, dans son déplacement, le parallélisme des sections principales. Or, la très petite différence d'intensité, aperçue avec les tourmalines, persistait toujours sur la même demi-lame.

» Si la méthode se prête à un contrôle aussi facile et se trouve indépendante de la complexité des radiations employées, elle n'est pas, malheureusement, hien sensible. On voit aisément, dans le cas de la lumière, que, pour déceler une différence de $\frac{1}{16}$

par exemple, entre l'unité et le rapport $\frac{o}{a}$, il faudrait que la photographie put révéler

une différence relative de $\frac{1}{10}$ entre les intensités lumineuses qui impressionnent les deux plages contiguës, ce qui dépasse déjà beaucoup ce qu'on peut espérer.

» On ne saurait donc tirer de ces expériences négatives de dichroïsme un argument de grande valeur en faveur de l'hypothèse d'un vecteur longitudinal. Elles ajoutent seulement une distinction particulière de plus entre les rayons X et les rayons lumineux que nous connaissons (°). «

(1) Ces lames de quartz, de spath et de tourmalines, fournies par M. Verlain, étaient parallèles à l'axe. Les lames de mica et de ferrocyanure étaient obtenues par clivage.

(2) Travail fait au laboratoire de M. Bouty à la Sorbonne, on férmion e

J'avais déjà réalisé quelques-unes de ces expériences, quand M. J.-J. Thomson a publié, dans le numéro du 27 février du journal *The Nature*, dont je viens d'avoir connaissance, la même expérience négative dans le cas de la tourmaline.

C.R. Acad.Sci. Paris 122 (1896) 783-785

SOMETHING ABOUT X RAYS For Everybody.

Refractive index of all materials is close to 1 All materials absorb X-rays

ILLUSTRATED.	
LYNN, MASS. BUBIER PUBLISHING Co., 1896.	

How-to book gave step-by-step instructions on making radiographs, and included forms for ordering the equipment described.

The refractive index of a material in the x-ray range $n = 1-\delta+i\beta$ or $n = 1 - \frac{r_0\lambda^2}{2\pi}N_{at}(f_1 - if_2)$ BUT

$1/n \neq v/c$

The great challenge for X-ray optics !!!

X-rays versus Light

 $Re(n) = 1 - \delta + i\beta < 1$ $1 - n \sim 10^{-5} - 10^{-6}$

The European Light Source

 $n \geq 1$

n-1 ~ 0.1

Courtesy of A. Snigirev slide: 10

NATURE · VOL 384 · 7 NOVEMBER 1996

A compound refractive lens for focusing high-energy X-rays

A. Snigirev*, V. Kohn†, I. Snigireva* & B. Lengeler*‡

* European Synchrotron Radiation Facility, BP220, F-38043 Grenoble Cedex, France † Kurchatov, I. V., Institute of Atomic Energy, 123182 Moscow, Russia

The first AL CRL

<u>Refractive optics</u> after ~15 years development

standard tool at SR beamlines worldwide. ~ 50% of ESRF beamlines use refractive lenses

the most versatile and adaptable X-ray optics

- energy range
- -from a few keV to hundreds of keV
- focal length
- focal spot

- -from a few millimeters to tens of meters -from tens of <u>nanometers</u> to tens of microns
- microradian collimation
- high stability and low cost

applications: microdiffraction, microfluorescence and imaging,

standing wave microscopy etc.

Si parabolic lens

Courtesy of A. Snigirev

slide: 11

Fig. 7. Energy dependence of the cross-sections for the interaction of x-rays with a carbon and lead atom. The full line corresponds to the total cross-section σ_{tot} , σ_{abs} is the photoelectric absorption, σ_{el} corresponds to elastic scattering and σ_{C} to inelastic (Compton) scattering, σ_{pair} to the creation of electron-positron pairs. The shaded areas are the nuclear absorption cross-section ([24])

For any chemical element there is a set of absorption edges

Some edges (eV)

	К	L ₂	M ₂
Ŧ	13.6		
С	284.2		
Fe	7112	720	52.7
Ag	25514	3524	604
U	115606	20948	5182

X-ray absorption spectrum reflects local electronic and atomic structure of a material

A.3. Dependence on the polarization light

Pleochroism or dichroism is the change in color evident as the mineral is rotated under plane-polarized light.

Due to adsorption of particular wavelengths of light.

 \rightarrow transmitted light to appear colored.

Function of the thickness and the particular chemical and crystallographic nature of the mineral.

Also true in the X-ray energy range :

B. Poumellec et al., DCI-LURE

8

A.4. Dependence on the oxidation state

9

from the absorbing atom

- Several possible electronic states...

54

X-ray Absorption Cross-section

$$\sigma = \sum_{fi} |\langle \psi_f | \hat{O} | \psi_i \rangle|^2 \delta(\hbar \omega - (E_f - E_i))$$

In the x-ray regime, the magnetic part of the electromagnetic field can be neglected the operator \hat{O} is reduced to its electric part (multipolar expansion of this electric field)

$$\hat{O} = \vec{\epsilon} \cdot \vec{r} \left(1 - \frac{1}{2} i \vec{k} \cdot \vec{r} \right)$$

$$E1 \quad E2$$

$$\sigma = \sum_{\alpha\beta} \epsilon_{\alpha}^{*} \epsilon_{\beta} D_{\alpha\beta} - \frac{i}{2} \sum_{\alpha\beta\gamma} \epsilon_{\alpha}^{*} \epsilon_{\beta} k_{\gamma} (I_{\alpha\beta\gamma} - I_{\beta\alpha\gamma}^{*})$$

$$+ \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \epsilon_{\alpha}^{*} \epsilon_{\beta} k_{\gamma} k_{\delta} Q_{\alpha\beta\gamma\delta}$$

$$D_{\alpha\beta} = \sum_{fi} \langle \psi_i | r_\alpha | \psi_f \rangle \langle \psi_f | r_\beta | \psi_i \rangle$$

$$I_{\alpha\beta\gamma} = \sum_{fi} \langle \psi_i | r_\alpha | \psi_f \rangle \langle \psi_f | r_\beta r_\gamma | \psi_i \rangle$$

$$\mathcal{Q}_{\alpha\beta\gamma\delta} = \sum_{r_i} \langle \psi_i | r_{\alpha}r_{\beta} | \psi_f \rangle \langle \psi_f | r_{\gamma}r_{\delta} | \psi_i \rangle.$$

Dipole-Dipole E1.E1 Contribution

Dipole-Quadrupole E1.E2 Contribution

Quadrupole-Quadrupole E2.E2 Contribution

$$\sigma = \sum_{\alpha\beta} \epsilon_{\alpha}^{*} \epsilon_{\beta} D_{\alpha\beta} - \frac{i}{2} \sum_{\alpha\beta\gamma} \epsilon_{\alpha}^{*} \epsilon_{\beta} k_{\gamma} (I_{\alpha\beta\gamma} - I_{\beta\alpha\gamma}^{*}) + \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \epsilon_{\alpha}^{*} \epsilon_{\beta} k_{\gamma} k_{\delta} Q_{\alpha\beta\gamma\delta}$$

This rank-2 tensor is fully symmetric and reflects anisotropy of the electronic structure of absorbing atom: linear birefringence and linear dichroism effects.

In the presence of an external magnetic field or spontaneous magnetic order, it has an antisymmetric part that is responsible for the Faraday effect and the magnetic circular dichroism.

Further terms in the symmetric part are quadratic in the magnetization and describe the Cotton-Mouton effect and the magnetic linear dichroism.

$$\sigma = \sum_{\alpha\beta} \epsilon_{\alpha}^{*} \epsilon_{\beta} D_{\alpha\beta} - \frac{i}{2} \sum_{\alpha\beta\gamma} \epsilon_{\alpha}^{*} \epsilon_{\beta} k_{\gamma} (I_{\alpha\beta\gamma} - I_{\beta\alpha\gamma}^{*}) + \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \epsilon_{\alpha}^{*} \epsilon_{\beta} k_{\gamma} k_{\delta} Q_{\alpha\beta\gamma\delta}$$

This rank-4 tensor may give rise to an optical anisotropy in cubic crystals.

In the presence of an external magnetic field or spontaneous magnetic order, it is also giving rise to linear magneto-optical effects: the Faraday effect and the magnetic circular dichroism.

$$\sigma = \sum_{\alpha\beta} \epsilon_{\alpha}^{*} \epsilon_{\beta} D_{\alpha\beta} - \frac{i}{2} \sum_{\alpha\beta\gamma} \epsilon_{\alpha}^{*} \epsilon_{\beta} k_{\gamma} (I_{\alpha\beta\gamma} - I_{\beta\alpha\gamma}^{*}) + \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \epsilon_{\alpha}^{*} \epsilon_{\beta} k_{\gamma} k_{\delta} Q_{\alpha\beta\gamma\delta}$$

This rank-3 tensor is fully asymmetric and in the absence of any external magnetic field or spontaneous magnetic order describes effects related to natural optical activity: circular birefringence and circular dichroism effects.

In the presence of an external magnetic field or spontaneous magnetic order, it is responsible for non-reciprocal or directional optical effects: x-ray non-reciprocal linear dichroism and magnetochiral dichroism.

Polarization dependent X-ray absorption spectroscopy

X-ray dichroism is difference in X-ray absorption between two orthogonal polarizations of incoming beam

Quantity to measure: $\Delta \mu = \mu^+ - \mu^-(CD)$; $\Delta \mu = \mu^{\parallel} - \mu^{\perp}(LD)$

Dichroisms	Multipoles	Parity	Time-Reversal +1	Time-Reversal -1
Rotational Anisotropy	E1E1 + E2E2	Even and Odd	XNLD Alexander <i>et al.</i> (1963)	
Magneto- Optics	E1E1 + E2E2	Even and Odd	XMLD Van der Laan <i>et al.</i> (1986)	XMCD Schütz <i>et al.</i> (1987)
Optical Activity	Optical Activity (E1M1)		XNCD ID12 team (1998)	XnrLD+ XMχD ID12 team (2000-2001)

ESRF Beamline ID12

European Synchrotron Radiation Facility

The European Light Source

Strongly absorbing (*single crystals*) or nearly transparent (*thin films*) samples

Transmission experiments is hardly possible

Total Fluorescence Yield Detection Mode

- Well suitable for single crystals, thin films, etc.
- Probing the bulk properties
- Does not depend on the magnetic field

ID12 straight section

Wide energy range at the ID12 beamline

2.05 keV - 15 keV

IA				V													0
1 H				n	- et	ige											2 4 4
1.008	ПА			11	- 00		2					ША	IVA	VA	VIA	VIIA	4.003
3	4				- 51	ige	3					5	6	7 NI	8	9	10 N -
6.941	В е 9.012			M - edges B C N O										16.00	19.00	1NC 20.18	
11	12			13 14 15 16									17	18			
22.99	₩g	шв	IVB	VB	VIB	νпв		VIIIB		в	пв	A J 26.98	SI 28.09	P 30.97	S 32.06	CI 35.45	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
33.10	38	39	47.90	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
<u>85.47</u> 55	<u>87.62</u> 56	88.91 57 ±	91.22 72	92.91 73	95.94 74	(98)	101.1 76	102.9	106.4 78	107.9 79	112.4 80	114.8 81	118.7 82	121.8 83	127.6 84	126.9 85	131.3 86
Čs	Ba	La	Hf	Ta	Ŵ	Re	Ös	İr	Pt	Âu	Ĥg	Π	Pb	Bi	Po	Ät	Ř'n
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
Er	Ra		Rf	Ha	Unh	Uns	108	Une									
(223)	(226.0)	(227)	•••	ma	•••••	•		0									
			* 58	59 Dm	60 N.d.	61 Dm	62	63	64	65	66	67	68	69 T ree	70 Vh	71	
			140.1	140.9	144.2	(145)	3111 150.4	EU 152.0	GG 157.3	158.9	162.5	ΠO 164.9	167.3	168.9	173.0	LU 175.0	
			^{**} 90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			232.0	(231)	U 238.0	(244)	Pu (242)	(243)	Cm (247)	BK (247)	Ct (251)	ES (252)	Fm (257)	(258)	NO (259)	(260)	

European Synchrotron Radiation Facility

Polarisation transfer by monochromator

Quarter wave plate chamber

Phase shift between σ and π component of olarization induced by a diffracting crystal:

$$\varphi = \frac{\pi}{2} \left(\frac{r_e}{\pi V}\right)^2 \frac{F_h \cdot F_{\overline{h}} \cdot \lambda^3 \cdot \sin 2\theta_0}{\theta - \theta_0} \cdot z$$

Transmission profile of a diamond QWP at 7.2 keV

Very powerful tool for X-ray linear (natural or magnetic) dichroism experiments.

The European Light Source

ESRF Beamline ID12

European Synchrotron Radiation Facility

The European Light Source

Reflectometer/Diffractometer

Magnetic field of 0.5 Tesla generated by one magnetic period of Helios-I

Performances

0.001° precision
Incident beam vertical size: ~ 100μm
Entrance slits: 40 μm
UHV
Temperature from (20K to 300K)

Simultaneous measurements of reflected intensity and Fluorescence Yield

Angle of incidence Θ (deg.)

From the analysis of Kiessig fringes one gets unique information about properties at the interfaces (magnetic incl.)

The European Light Source

Experimental station for X-ray Natural Linear and Circular Dichroisms

 $\begin{aligned} & \textbf{X-ray Linear Dichroism:} \\ < \textbf{E1.E1} > transitions and < \textbf{E2.E2} > transitions \\ & \textbf{Brouder Ch., J. Phys.: Condensed Matter 2 (1990), 701-738} \\ & \textbf{For < E1.E1} > transitions and sample without symmetry \\ & \sigma^{\text{Dxx}} = \sigma^{\text{D}}(0,0) - 1/\sqrt{2} (3 \sin^2 2\theta - 1)\sigma^{\text{D}}(2,0) - \sqrt{3} \sin(\theta) \\ & \times (\cos \varphi \sigma^{\text{Dr}}(2,1) + \sin \varphi \sigma^{\text{Di}}(2,1)) - \sqrt{3} \cos^2 \theta (\cos(2\varphi)\sigma^{\text{Dr}}(2,2) \\ & + \sin(2\varphi)\sigma^{\text{Di}}(2,2)) \end{aligned}$ (A39a) $\sigma^{\text{Dxy}} = \sigma^{\text{Dyx}} = \sqrt{3} \sin \theta (\sin \varphi \sigma^{\text{Dr}}(2,1) - \cos \varphi \sigma^{\text{Di}}(2,1)) \\ & + \sqrt{3} \cos \theta (\sin(2\varphi)\sigma^{\text{Dr}}(2,2) - \cos(2\varphi)\sigma^{\text{Di}}(2,2)) \end{aligned}$ (A39b) $\sigma^{\text{Dyy}} = \sigma^{\text{D}}(0,0) + 1/\sqrt{2} \sigma^{\text{D}}(2,0) + \sqrt{3} (\cos(2\varphi)\sigma^{\text{Dr}}(2,2) + \sin(2\varphi)\sigma^{\text{Di}}(2,2)). \end{aligned}$ (A39c)

X-ray Natural Circular Dichroism: <E1.E2> transitions Natoli C.R. et al, Eur.Phys.J. B4 (1998), 1-11

Backscattering detection geometry is the most convenient: sample can be rotated either around an axis parallel to the X-ray wavevector (ϕ) or perpendicular to the beam direction (θ)

X-ray magnetic circular dichroism on nanomaterials

Windowless chamber Cryogenically cooled: T = 150 K High solid angle: ~ 350 mm² @ 20 cm High counting rate: > 10⁵ cps/channel

Adapted now for XMCD experiments: T > 4.2 K; external magnetic field $H < \pm 6$ T

Typical example of an XMCD experiment Pt magnetism in monodispersed Fe₇₀Pt₃₀ nanoparticles deposited on a Si wafer

XMCD at the Pt L_{II-III} Edges

Useful counting rate : 20 kcps per channel

Concentration < 10¹³ atoms/cm² Average particle diameter : 6 nm

Sample has been provided by M. Spasova, M. Farle (Univ. Duisburg, Germany)

Experimental Set-Up for X-ray Detection of Magnetic Resonance

Towards very high magnetic fields

Solenoid magnet built by Cryogenic Ltd: H_{max} = 17 T; Sweep rate = 2 T/min Amagnetic cryostat 2.3 K < T < 300 K

The European Light Source

X-ray Linear Dichroism

GaN:Mn diluted magnetic semiconductor

Samples were grown by plasma assisted molecular beam epitaxy (PAMBE)

E. Sarigiannidou^{*}, E. Monroy and H. Mariette Equipe mixte CEA-CNRS-UJF "Nanophysic and Semiconductors", DFRMC/SP2M CEA, Grenoble, France * LMGP/LTM, INP -Minatec, Grenoble, France

Homogeneous Incorporation of Mn from 0.04 up to max. 6.3 at.%

in-situ RHEED monitoring the growth

smooth surfaces absence of secondary phases no information about the incorporation

High Angle X-ray Diffraction

- detection limit of ~1% of sample volume
 absence of secondary phases
- * absence of secondary phases
- difference in the lattice parameter
- * not sensitive to amorphous phases

SQUID

 measure the whole sample including substrate, cap layer, inclusions, impurities
 non trivial extraction of a true magnetic response

Space group 186 Structure : P6₃mc Non-centrosymmetric

What do we need to know more ?

- 1. How are Mn atoms incorporated in the lattice?
- Single phase
- Presence of (magnetic) secondary phases
- Clusters formation

Concentration limit ?

2. What is the site of Mn atoms ?
 > Ga or N substitution
 > Interstitial
 > Substitution and interstitial

3. What is the valence state of Mn atoms?

4. Is it really a diluted magnetic semiconductor or ferromagnetic compound diluted in semiconductor ?

X-ray Linear Dichroism (XLD) Results

All the Mn K-edge XANES spectra have similar spectral shape

 small differences are observed at the first pre-edge peak (narrowing of 3d band)

□ XLD spectra are identical for all samples from 0.04% up to 6.3% of Mn

No secondary parasitic or clusters phases
 0.04% Mn is the reference spectrum
 (presence of secondary phases is unlikely)

Mn is perfectly incorporated up to at. concentration of 6.3%

X-ray Magnetic Circular Dichroism

European Synchrotron Radiation Facility

On a question about the magnetic rotation of plane polarised primary X-rays

886

Zeitschrift fur Physik, 39, 886-900 (1926)

Zur Frage nach der magnetischen Drehung der Polarisationsebene primärer Röntgenstrahlen.

Von W. Kartschagin und E. Tschetwerikowa in Moskau.

Mit 3 Abbildungen. (Eingegangen am 16. September 1926.)

In der vorliegenden Arbeit wurde eine Wirkung des magnetischen Feldes auf die Polarisationsebene der Röntgenstrahlen bei ihrem Durchgang durch Paraffin und Eisen untersucht. Auf Grund der Resultate der Arbeit und der Versuche bei einigen Annahmen, die Folgerungen der Elektronentheorie der Dispersion auf die zu behandelnde Frage anzuwenden, ziehen wir folgenden Schluß: Beim Durchgang primärer Röntgenstrahlen durch Paraffin kann die magnetische Drehung der Polarisationsebene wegen der Kleinheit des Drehungswinkels nicht beobachtet werden. Beim Durchgang der primären Strahlen durch Eisen kann man eine Drehung der Polarisationsebene erwarten, aber eine genaue Messung des Drehungswinkels ist sehr schwierig.

In this work, an effect of a magnetic field on plane polarised X-rays scattered by Paraffin and Iron is studied. Far from the absorption edge the rotation can not be observed due the weakness of the rotation

angle. Whereas at an absorption edge of ferromagnetic materials one can expect to measure the magnetic rotation eventhough precise measurements are very difficult.

BASICS OF XMCD

The first serious approach to the problem

PHYSICAL REVIEW B

VOLUME 12, NUMBER 11

1 DECEMBER 1975

Calculation of the M_{23} magneto-optical absorption spectrum of ferromagnetic nickel

J. L. Erskine*

Department of Physics, University of Illinois, Urbana, Illinois 61801

E. A. Stern[†]

Department of Physics, University of Washington, Seattle, Washington 98195 (Received 28 April 1975)

The M_{23} magneto-optical absorption spectrum of ferromagnetic nickel is calculated using an approach similar to the component state-density method that has been successfully used in obtaining valence-band emission and absorption x-ray spectra of metals. The M_{23} magneto-optical effects result predominantly from spin-orbit splitting of the 3p core state in conjunction with the final *d*-state spin polarization. The calculated spectrum exhibits features that are directly related to electronic structure parameters including the 3p core spin-orbit splitting, and the unfilled *d*-band spin polarization. Temperature variations in the magneto-optical structure can be used to determine separately the exchange-splitting variation and spin-wave excitation contributions to the decrease in the magnetization. Experimental verification of these predictions should provide insight into the applicability of the Stoner model to ferromagnetic nickel and may be helpful in resolving some of the apparently conflicting results of other experimental probes of the spin polarization near the Fermi level in nickel.

Two-step model

TWO STEP MODEL OF XMCD

Absorption of a right circularly polarized photon

L_{III}-edge (2p_{3/2}

L_{II}-edge (2p_{1/2})

Excited photoelectrons are spin polarized

TWO STEP MODEL OF XMCD

Exchange splitting of the valence band is driving the second step

XMCD is the direct probe of unoccupied spin up and spin-down density of states

First experimental evidence of XMCD

VOLUME 58, NUMBER 7

PHYSICAL REVIEW LETTERS

16 FEBRUARY 1987

Absorption of Circularly Polarized X Rays in Iron

G. Schütz, W. Wagner, W. Wilhelm, and P. Kienle^(a) Physik Department, Technische Universität München, D-8046 Garching, West Germany

R. Zeller

Institut für Festkörperforschung der Kernforschungsanlage Jülich, D-5175 Jülich, West Germany

and

R. Frahm and G. Materlik

Hamburger Synchrotronstrahlungslabor am Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg 52, West Germany (Received 22 September 1986)

The transmission of synchrotron radiation through magnetized iron at energies above the K-absorption edge shows relative differences for right and left circular polarization of several times 10^{-4} . The observed spin dependence of the near-edge photoabsorption is proportional to the difference of the spin densities of the unoccupied bands. In the extended absorption region up to 200 eV above the Fermi level a small spin-dependent absorption is observed and thus is expected to give information on the magnetic neighborhood of the absorbing atom.

PACS numbers: 75.50.Bb, 75.10.Lp, 75.25.+z, 78.70.Dm

 $(\mathsf{stun}\,\mathsf{quo})|I^0| \qquad (\mathsf{stun}\,\mathsf{quo})|I^0| \qquad (\mathsf{s$

FIG. 1. (a) Absorption I_0/I of x rays as function of the energy E above the K edge of iron and (b) the difference of the transmission $\Delta I/I$ of x rays circularly polarized in and opposite to the direction of the spin of the magnetized d electrons.

XMCD is a new approach to study ferromagnetic system

ID COMMUNICATIONS				(a) L _{2,3} PHOTOABSORPTION OF NICKEL
PHYSICAL REVIEW B	VOLUME 42, NUMBER 11	15 OCTOBER 1990-I	120- È	- † †
	Rapid Communications		ON INTENS	+
Rapid Communications are intendet treatment both in the editorial office a printed pages and must be accompanie	i for the accelerated publication of important new resu nd in production. A Rapid Communication in Physical d by an abstract. Page proofs are sent to authors.	llts and are therefore given priority Review B should be no longer than 4	ABSORPT1	
Soft-x-ray 1	nagnetic circular dichroism at the $L_{2,3}$ edg	ges of nickel	0	
Α	C. T. Chen, F. Sette, Y. Ma, and S. Modesti T&T Bell Laboratories, Murray Hill, New Jersey 0797 (Received 2 March 1990)	4	+ + +	(b) MAGNETIC CIRCULAR DICHROISM
Magnetic circular romagnetic nickel by sity ratio between the simple exchange-split	dichroism (MCD) has been observed at the $L_{2,3}$ absu use of circular-polarized soft-x-ray synchrotron radiatio L_2 and the L_3 edges is found to differ appreciably from- valence-band model. Fine MCD features, impercepti	orption edges of fer- on. The MCD inten- n that predicted by a ble in the absorption	INTENSITY DIF	L ₂ B'
spectra, are also obso feasibility of MCD n and 4f ferromagnetic	rved and a tentative interpretation is given. This wor neasurements in the soft-x-ray region, provides a new a systems with their respective dipole-permitted $2p \rightarrow 3d$	k, demonstrating the approach to study $3d$ <i>l</i> and $3d \rightarrow 4f$ transi-	- 8	850 870 890
uons.				PHOTON ENERGY (eV)

Sum rules relate experimental XMCD spectra to the spin and orbital moments

VOLUME 68, NUMBER 12 PHYSICAL REVIEW LETTERS

LETTERS

23 MARCH 1992

X-Ray Circular Dichroism as a Probe of Orbital Magnetization

B. T. Thole, ⁽¹⁾ Paolo Carra, ⁽²⁾ F. Sette, ⁽²⁾ and G. van der Laan⁽³⁾ ⁽¹⁾Department of Chemical Physics, Materials Science Centre, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands ⁽²⁾European Synchrotron Radiation Facility, BP 220, F-38043 Grenable CEDEX, France ⁽³⁾Daresbury Laboratory, Science and Engineering Research Council, Warrington, WA44AD, United Kingdom (Received 2 December 1991)

A new magneto-optical sum rule is derived for circular magnetic dichroism in the x-ray region (CMXD). The integral of the CMXD signal over a given edge allows one to determine the ground-state expectation value of the orbital angular momentum. Applications are discussed to transition-metal and rare-earth magnetic systems.

 $\int_{i^+} (\mu^+ - \mu^-) - \frac{c+1}{c} \int_{i^-} (\mu^+ - \mu^-) = C \times [A \langle S_z \rangle + B \langle T_z \rangle]$

Orbital sum rule

$$\int_{j^{+}+j^{-}} (\mu^{+}-\mu^{-}) = \frac{2l(l+1)}{l(l+1)+2-c(c+1)} \times C \times \langle L_{z} \rangle$$

VOLUME 70, NUMBER 5

PHYSICAL REVIEW LETTERS

1 FEBRUARY 1993

X-Ray Circular Dichroism and Local Magnetic Fields

Paolo Carra,⁽¹⁾ B. T. Thole,^{(1),(2)} Massimo Altarelli,⁽¹⁾ and Xindong Wang⁽³⁾

⁽¹⁾European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX, France ⁽²⁾Department of Chemical Physics, Materials Science Center, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

⁽³⁾Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (Received 13 July 1992)

Sum rules are derived for the circular dichroic response of a core line (CMXD). They relate the intensity of the CMXD signal to the ground-state expectation value of the magnetic field operators (orbital, spin, and magnetic dipole) of the valence electrons. The results obtained are discussed and tested for transition metals and rare earths.

$$T = \sum_{i} (s_i - 3r_i(r_i \cdot s_i)/r_i^2) \qquad C = \frac{1}{n_h} \int_{j^+ + j^-} (\mu^+ + \mu^- + \mu^0) - X \text{-ray absorption cross section per hole};$$

$$A = \frac{l(l+1) - 2 - c(c+1)}{3c}$$
$$B = \frac{l(l+1)[l(l+1) + 2c(c+1) + 4] - 3c(c-1)^2(c+2)^2}{6c \cdot l(l+1)}$$

The European Light Source

Application of the sum rules

 $\begin{aligned} < & L_z > = n_h (\Delta I_{M5} + \Delta I_{M4}) / (I_{M5} + I_{M4}) = \mu_L \\ & 2 < S_z^{eff} > = 2 < S_z > + 6 < T_z > = n_h (2 \ \Delta I_{M5} - 3 \ \Delta I_{M4}) / (I_{M5} + I_{M4}) = \mu_S \ (if \ T_z \approx 0) \\ & < L_z > / < S_z^{eff} > = 2 (\Delta I_{M5} + \Delta I_{M4}) / (2 \ \Delta I_{M5} - 3 \ \Delta I_{M4}) \ is independent of n_h \\ & < l.s > = -3/4 n_h (2 I_{M5} - 3 I_{M4}) / (I_{M5} + I_{M4}) + \delta \end{aligned}$

Application of the sum rules

$$= + 3$$

 $< T_z >$ is a measure of a spin moment anisotropy induced either by a charge quadrupole moment or by the spin-orbit interaction In the case of 5f-electrons: $< T_z > \neq 0$

In the intermediate spin-orbit coupling scheme (for free ions):

- for 5f² $\mathbf{R}_T = \langle T_Z \rangle / \langle S_Z \rangle = 1.15$
- for 5f³ $\mathbf{R}_T = \langle T_Z \rangle / \langle S_Z \rangle = 0.57$

There are no any direct measurements of this term (so far !!!)

Possibility to estimate $\langle T_Z \rangle$ via combination of XMCD, Neutron and Compton scattering with SQUID measurements

fcc Laves phase with a₀=7.058 ferromagnet with Curie temperature T_c = 160 K total magnetic moment 1.09 μ_B/ formula unit

strong spin-orbit coupling in the 5f states => orbital moment

third Hund's rule:

5f spin and orbital moments are of opposite sign

Polarized neutron scattering experiments: a total U 5f moment < 0.01 μ_B with $\mu_L \sim -\mu_S \sim 0.23 \ \mu_B$

M. Wulff, G. H. Lander, B. Lebech, and A. Delapalme, Phys. Rev. B 39, 4719 (1989).

UTX ternary compounds

Both are ferromagnets

• UIrAl ($\mu_{TOT} = 0.98 \ \mu_B$) • UPtAl ($\mu_{TOT} = 1.38 \ \mu_B$)

A.V. Andreev, J. Alloys Compd. 336, 77 (2001)

XMCD at the Ir $L_{2,3}$ -edges in UIrAl

$ \begin{array}{c} \mu_{\rm L}^{\rm Ir}(5d) \\ (\mu_{\rm B}/{\rm atom}) \end{array} $	$\frac{\mu_{\rm S}^{\rm Ir}(5d)}{(\mu_{\rm B}/\rm atom)}$	$\frac{\mu_{tot}^{Ir}(5d)}{(\mu_B / atom)}$	$\mu_{\rm L}^{\rm Ir}(5d)/\mu_{\rm S}^{\rm Ir}(5d)$
0.028	0.048	0.076	0.60

□ Strong XMCD at the L₃-edge

□ Small XMCD at the L₂-edge

□ Large Ir 5d orbital moment aligned parallel to the spin

Analysis combining VSM magnetometry and XMCD

- $M^{U}(5f) = 0.92 \ \mu_{B} / U$ atom for $n_{f} = 2 \ (U^{4+})$
- $M^{U}(5f) = 0.62 \ \mu_{B} / U$ atom for $n_{f} = 3 \ (U^{3+})$
- $M^{Ir}(5d) = 0.076 \mu_B / Ir atom (sum over two Ir sites)$

 $M_{total} = M^{U} + M^{Ir} = 0.996 \ \mu_{B}$

Al and U(6d) contributions are neglected

VSM Data: $M_{total} = 0.98 \mu_B$ at 6 Tesla and 4.2K

Induced magnetism on Ir 5d states

Indirect exchange interaction

Ir orbital moment feels the strong U spin-orbit coupling ⇒ Enhanced Ir orbital moment

The European Light Source

Sensitivity of the XMCD technique

To compare with $4.15\mu_B$ per Mn atom

The European Light Source

X-ray Natural Circular Dichroism

Irreducible Parts of Optical Activity Tensor

J. Jerphagnon et D.S.Chemla J. Chem. Phys. <u>65</u>, 1524 (1976)

Non-Centro-		Pseudo-Scalar	<i>Polar</i> Vector	Pseudo-Deviator
Symmetrical	Point Groups	Enantio-	Voigt/Fedorov	XNCD
Crystal Classes		morphism	OA	
		E1.M1	E1.M1+E1.E2	E1.M1+E1.E2
$\overline{4}3\mathbf{m};\ \overline{6}\mathbf{m}2;\ \overline{6}$	$T_d; D_{3h}; C_{3h}$	No	No	No
432; 23	O ;T	Yes	No	No
622; 32; 422	D ₆ ; D ₃ ; D ₄	Yes	No	Yes
6 mm ; 3 m ; 4 mm	C_{6v} ; C_{3v} ; C_{4v}	No	Yes	No
6; 3; 4	C ₆ ; C ₃ ; C ₄	Yes	Yes	Yes
$\overline{4}2\mathbf{m}$	D _{2d}	No	No	Yes
$\overline{4}$	S_4	No	No	Yes
mm 2	C_{2v}	No	Yes	Yes
222	\mathbf{D}_2	Yes	No	Yes
2	C ₂	Yes	Yes	Yes
m	Cs	No	Yes	Yes
1	C ₁	Yes	Yes	Yes

Structure of a-Nickel Sulfate Hexahydrate

P4₁2₁2

 α -NiSO₄·6H₂O is a uniaxial crystal with four formula units per unit cell that belongs to the enantiomorphpous tetragonal space groups, $P4_12_12$ or $P4_32_12$. Four nearly perfect $Ni(H_2O)_6^{2+}$ octahedrons are identical, except for orientation, and are related through a screw axis which is parallel to the tetragonal axis of the crystal, *i.e.* crystallographic *c* axis or optical axis. The point group symmetry at each Ni²⁺ site **is** C₂. Ni

P4₃2₁2

XNCD spectra of a-NiSO4 · 6H2O crystals

Amplitude of the XNCD signal is nearly 1% with respect to the edge jump !

The European Light Source

ESRE

Angular dependence of the XNCD signal

This result confirms $(3\cos^2\Theta - 1)$ dependence of the E1.E2 XNCD signal. To measure a weak scalar E1.M1 signal one has to perform angular scans in the vicinity of the magic angle $\Theta = 54.73^{\circ}$

<E1.M1> contribution is as small as 3·10⁻⁵ and is 60 times smaller than <E1.E2> contribution

Monoelectronic M1 transitions from 1s core levels are forbidden in non-relativistic approach BUT

they are allowed in the relativistic theory:

M1 transition selection rules are: $\Delta l=0,\pm 1,\pm 2, \Delta j=1$; except s \leftrightarrow p transitions

The European Light Source

GaFeO₃ is the mostly studied multiferroic

Orthorombic unit cell a=8.72A, b=9.37A,c=5.07A C_{2v} polar crystal class Space group Pc2₁n Polarization along b axis

Ferrimagnet with Tc \leq 270 K Easy magnetization along c

Magnetic point group m'2'm

Anapole spin moment is estimated to be 24.155 μ_B Å per unit cell.

Yu. F. Popov, A. M. Kadomtseva, G. P. Vorob'ev et al JETP, 87 (1998), 146

Irreducible Parts of Optical Activity Tensor

J. Jerphagnon et D.S.Chemla J. Chem. Phys. <u>65</u>, 1524 (1976)

Non-Centro-		Pseudo-Scalar	<i>Polar</i> Vector	Pseudo-Deviator
Symmetrical	Point Groups	Enantio-	Voigt/Fedorov	XNCD
Crystal Classes		morphism	OA	
		E1.M1	E1.M1+E1.E2	E1.M1+E1.E2
$\overline{4}3\mathbf{m};\ \overline{6}\mathbf{m}2;\ \overline{6}$	$T_d; D_{3h}; C_{3h}$	No	No	No
432; 23	O ;T	Yes	No	No
622; 32; 422	D ₆ ; D ₃ ; D ₄	Yes	No	Yes
6 mm ; 3 m ; 4 mm	C_{6v} ; C_{3v} ; C_{4v}	No	Yes	No
6; 3; 4	C ₆ ; C ₃ ; C ₄	Yes	Yes	Yes
$\overline{4}2\mathbf{m}$	D _{2d}	No	No	Yes
$\overline{4}$	S ₄	No	No	Yes
mm 2	C _{2v}	No	Yes	Yes
222	\mathbf{D}_2	Yes	No	Yes
2	C ₂	Yes	Yes	Yes
m	Cs	No	Yes	Yes
1	C ₁	Yes	Yes	Yes

X-ray Natural Circular Dichroism in $GaFeO_3$ $\Delta \sigma_{NCD} = \sigma^+ - \sigma^-$

Only two interference terms contribute to the dichroic signal :

$$\langle i | \hat{\varepsilon} \cdot r | f \rangle \langle f | (k \times \hat{\varepsilon}) \cdot (L + gs) | \cdot i \rangle$$

E1.M1 Origin of OA in the visible Very small in the X-ray range

$$\langle i | \hat{\varepsilon} \cdot r | f \rangle \langle f \cdot | \hat{\varepsilon} \cdot rk \cdot r | i \rangle$$

E1.E2 only for anisotropic systems Sizeable in the X-ray range

Space group Pc2₁**n (class mm2)** <=> Non-enantiomorphous crystal No optical activity along c axis

$$\Delta \sigma_{\rm NCD} \propto P_{\rm c} \sin^2 \Theta \sin 2 \phi$$

C.R. Natoli, C. Brouder, Ph. Sainctavit, J. Goulon, C. Goulon-Ginet, A. Rogalev, Eur. Phys. J., B4 (1998), 1-11

The European Light Source

X-ray Natural Circular Dichroism in GaFeO3

Can we quantify Optical Activity of an atom with X-rays?

XNCD Sum Rule

P. Carra , A. Jerez & I. Mari - Phys. Rev. B67 45111 (2003)

$$\begin{split} \int_{Edge} \frac{\sigma_{EIE2}}{(\hbar\omega)^2} d(\hbar\omega) &= \frac{-16\pi^2 \alpha_0}{\hbar c} \frac{S_3}{S_0} \left(2\ell_c + 1 \right) \sum_{\ell,\ell'} R_{\ell}^{(1)} R_{\ell'}^{(2)} a^{(2,+1)} \left(\ell,\ell';\ell_c \right) \\ &\times \sqrt{\frac{3}{2}} \left\langle \Psi | [L,\Omega]^{(2)} | \Psi \right\rangle \\ R_{\ell'}^{(1)} &= \int_0^{\rho_{MT}} r^3 dr \, \phi_c(r) \, \phi_\ell(r) \qquad R_{\ell'}^{(2)} &= \int_0^{\rho_{MT}} r^4 dr \, \phi_c(r) \, \phi_{\ell'}(r) \\ a^{(2,+1)} &= \frac{2(2\ell+1)(2\ell'+1)[6+3\ell_c(\ell_c+1)-2\ell(\ell+1)-\ell'(\ell'+1)]}{(\ell+\ell'+1)(\ell_c-3\ell'+2\ell)(\ell_c+3\ell'-2\ell+1)(\ell_c+\ell)^2(\ell_c+\ell+2)^2} \end{split}$$

Radial integrals to be calculated numerically

Multipole moments

distribution of charges

distribution of currents

Picture of a parity-odd atom

parity conserving atom

 $|\Psi> = |P_{1/2}>$

parity violating atom

$$\begin{split} \Psi > &= \mid P_{1/2} > + i \, \epsilon_{pv} \mid S_{1/2} > \\ & \text{ in H-atom: } \epsilon = 10^{-11} \\ & \text{ here: } \epsilon = 5 \, \% \end{split}$$

the lowest order parity-odd magnetic multipole distribution of a current

Coexistence of dipole and anapole moments violates parity

Anapole Moment link together Chirality & Magnetism

Acknowledgements:

F.Wilhelm, N. Jaouen, A. Smekhova, J. Goulon, Ch. Goulon-Ginet,

THANK YOU

The European Light Source