Colloidal crystals studied with SAXS Condensed matter physics of elephants

A.V. Petukhov

Van 't Hoff laboratory for physical and colloid chemistry Utrecht University, The Netherlands

Universiteit Utrecht

Schedule

Part I

- Introduction to nanoelephants
- Instrumentation
- Example 1: Hard spheres Part II
- Example 2: Rusted nanonails
- Conclusion

What is colloid?

International Union of Pure and Applied Chemistry

"The term colloidal refers to a state of subdivision, implying that the molecules or polymolecular particles dispersed in a medium have at least in one direction a dimension roughly between 1 nm and 1 μ m."

What is colloid?

Why < 1 μm? Or Newton versus Boltzmann

 $\Delta E = m^* g \,\Delta h$ $= \Delta \rho V g \,\Delta h$

Thermal energy $k_B T$ $\approx 4 \times 10^{-21} J @ T = 300 \text{ K}$

 Δh

Colloid self-assembly: Entropy-induced order

fluid

crystal

concentration

Entropy Fluid Crystal	
Configurational (macroscopic) high low	
Excluded volume low high (microscopic)	

Colloid self-assembly: Entropy-induced order

Why is it useful: Photonics

Material with periodic modulation of optical properties on the scale comparable to the wavelength of light (hundreds of nm).

Resonant light scattering will cause photonic band gaps: light with certain wavelength will not be able to propagate through.

> Example of 1D photonic nanomaterial: Dielectric multilayer laser mirrors

Going from 1D to 3D:

Creating full band gap Photonic crystal = Semiconductor for light
Fine control of light propagation & emission
Optical circuits

nature photonics

Waveguiding in photonic crystals

Applications

- Optical communications
- Optical computing
- Visualisation/display technology
- Light Harvesting (solar cells)
- Sensors
- Microlasers, ...

How can one synthesize photonic nanomaterials: Lythography techniques

- Electron Lythography
- Focused Ion Beam
- Optical Lythography

Beautiful design possibilities BUT

- difficult in 3D
- Scale-up problems
- Too involved and too expensive

Alternative approach: use colloidal self-assembly

fluid

- Three-dimensional
 Easy tuneable
 Can be scaled up
- Inexpensive

photonic materials

Colloid self-assembly by convective & capillary forces

Filling the voids with another material and removing the spheres

high contrast (no optical techniques applicable)

Schedule

- Introduction to nanoelephants
- Instrumentation
- Example 1: Hard spheres
- Example 2: Rusted nanonails
- Conclusion

Theory: Bragg's law

Ordinary (atomic) crystals: $d \sim \lambda$ => large diffraction angle 2θ

X-rays: λ~ 1 A

n=1,2,...

 $sin\theta = n\lambda/2d;$ Colloidal crystals: d>> λ => small diffraction angle 2θ (10⁻⁴ ... 10⁻³ radian)

d

Scattering experiment

Extreme angular resolution is needed How do we get it?

- parallel beam?
- pencil beam?

Microradian diffraction

Microradian diffraction

- Colloids = elephants => microradian XRD
- Peak positions: Crystal structure
 Peak width: Long-range order
 Peak tails: fluctuations

Schedule

- Introduction to nanoelephants
- Instrumentation
- Example 1: Hard spheres
- Example 2: Rusted nanonails
- Conclusion

Example 1: Hard balls

Face-centred cubic (fcc)

<u>Hexagonal close</u> <u>packed (hcp)</u>

Face-centred cubic (fcc)

<u>Hexagonal close</u> <u>packed (hcp)</u>

Random hexagonal close packed (rhcp)

All three (fcc, hcp & rhcp) have the same packing ratio

rhcp seen in the reciprocal space

Truly periodic crystal – sharp Bragg spots No interlayer periodicity => Braag rods Yet, some reflections stay sharp (only 3 lateral positions)

Earlier: in-plane stacking disorder

- J.M. Meijer, V.W.A. de Villeneueve, AVP, Langmuir, 23, 3554 (2007)
- V.W.A. de Villeneueve, P.S. Miedema, J.M. Meijer, AVP, EPL, 79, 56001 (2007)
- P.S Miedema, V.W.A. de Villeneueve, AVP, PRE, 77, 010401 (2008)

The idea of the experiment

Alexander Sinitskii et al. SEM of vertical deposition crystals *Mendeleev Comm., 2007* Volkert de Villeneuve et al. Confocal microscopy of sedimentary crystals, *Langmuir & EPL, 2007*³³

Sedimentary crystals

Vertical deposition crystals (controlled drying)

Popular technique to fabricate inverted photonic crystals

Picture courtesy K. Velikes

Can we look along the 110 direction?

110 direction

Sample is to be turned by 35 degrees

Sample is turned by 35 degrees

110 direction

What are the lines?

sample

Sample is turned by 35 degrees

- Stacking disorder can be clearly seen in this projection!
- These are the Bragg rods!

Is this what we see?

Wilson's theory: Structure factor variatic along Bragg rods

Times the form factor:

Is this what we see?

Wilson's theory:

- Stacking fault changes stacking direction
- One gets not one but two (twin) crystals with ...ABCABC... and

...ACBACB... stacking

How should we modify Wilson's theory?

- Double stacking faults do not change the stacking direction!
- One gets only one crystal with a unique stacking
- Het is logisch achteraf te zien (Dirk Aarts)

Paterson, M. S. J. Appl. Phys. 1952, 23(8), 805-811.

The wrong idea of the experiment

Alexander Sinitskii et al. SEM of vertical deposition crystals *Mendeleev Comm., 2007* Volkert de Villeneuve et al. Confocal microscopy of sedimentary crystals, *Langmuir & EPL, 2007*⁵⁶

Conclusions

- X-ray diffraction from 'nano-elephants' is doable
 - period: > 1 micron
 - long-range order: > 10 micron
- New type of defects in colloidal crystals are found and characterized

Schedule

- Introduction to nanoelephants
- Instrumentation
- Example 1: Hard spheres
- Example 2: Rusted nanonails
- Conclusion

Самоорганизация ржавых наногвоздиков

(жидко-кристалличаские фазы коллоидных частиц гётита)

Andrei Petukhov

Van 't Hoff laboratory for physical and colloid chemistry Utrecht University, The Netherlands

Universiteit Utrecht

Universiteit Utrecht

Colloidal Goethite

Горные вершины Спят во тьме ночной; Тихие долины Полны свежей мглой; Не пылит дорога, Не дрожат листы... Подожди немного, Отдохнешь и ты.

Лермонтов

Мирно высятся горы. В полусон Каждый листик средь бора На краю косогора Погружен. Птичек замерли хоры. Погоди: будет скоро И тебе угомон.

Пастернак

Uber allen Gipfeln ist Ruh', in allen Wipfeln spurest du kaum einen Hauch. Die Vogelein schweigen im Walde. Warte nur, balde ruhest du auch.

Johann Wolfgang von Goethe

Goethite

- α-FeOOH
- Preferred direction of crystal growth → boardlike particles
- Majorana 1902 / Cotton, Mouton 1907
- B.J. Lemaire / P. Davidson 2002-2005

Self-organisation of colloidal goethite

Magnetic properties

PHYSICAL REVIEW LETTERS

Smectic goethite: µrad XRD

Sample aligned

in magnetic field

Interlayer periodic structure

Intralayer non-periodic structure

Closer look:

Diffuse scattering 'streaks'

Long-range order

3D: Robust Order

few (~q²dq) long-wavelength modes in 3D more (~q^{D-1}dq) in low-dimentional systems (Landau-Peierls instability)

Nematic elasticity

$$F_{\mathbf{n}} = \frac{1}{2} \int d^d x \{ K_1 (\boldsymbol{\nabla} \cdot \mathbf{n})^2 + K_2 [\mathbf{n} \cdot (\boldsymbol{\nabla} \times \mathbf{n})]^2 + K_3 [\mathbf{n} \times (\boldsymbol{\nabla} \times \mathbf{n})]^2 \}$$

Coupling between smectic coordinates and nematic elasticity

$$\delta n = -\nabla_{\perp} u$$

u: in-layer coordinate

First derivative: rotation Second derivative: splay

Smectic liquid crystals: Landau-De Gennes free energy

$\propto q^4$ Ultrasoft at low q

Undulation

Compression

$$\langle u^2(\mathbf{r}) \rangle = \frac{k_{\rm B}T}{8\pi\sqrt{KB}} \ln\left(\frac{L}{d}\right)$$

Fluctuations destroy layer ordering for large L

Effect of Peierls-Landau instability on reflections:

Our result for goethite:

 $1 \propto 1 / q^{4 - 2n^2 \eta}$

No agreement!

 $\propto 1/q_{\perp}^{2-n^2\eta}$

No sign of Landau-Peierls instability

Principles of condensed matter physics

P. M. CHAIKIN Princeton University

T. C. LUBENSKY University of Pennsylvania

$$F_{\text{el}} = \frac{1}{2} \int d^3 x [B(\nabla_{\parallel} u)^2 + D(\nabla_{\perp} u + \delta \mathbf{n})^2] \qquad (6.3.11)$$

+ $\frac{1}{2} \int d^3 x [K_1(\nabla \cdot \mathbf{n})^2 + K_2(\mathbf{n} \cdot (\nabla \times \mathbf{n}))^2 + K_3(\mathbf{n} \times (\nabla \times \mathbf{n}))^2].$

$$F_{\text{el}} = \frac{1}{2} \int d^3 x [B(\nabla_{\parallel} u)^2 + D(\nabla_{\perp} u + \delta \mathbf{n})^2] \qquad (6.3.11)$$

+ $\frac{1}{2} \int d^3 x [K_1(\nabla \cdot \mathbf{n})^2 + K_2(\mathbf{n} \cdot (\nabla \times \mathbf{n}))^2 + K_3(\mathbf{n} \times (\nabla \times \mathbf{n}))^2].$

D and K define a new scale:

$$q_c = \sqrt{D / K_1}$$

For $q \ll q_c \text{ splay}(K_1)$ undulations are the softest.

For q >> q_c another type undulations should be of importance: n \approx Const; n and N are decoupled.

Our model:

Long wavelength:

 $F = \frac{1}{2} B (q_{||} u)^2 + \frac{1}{2} K (q_{\perp})^4 u^2$

Short wavelength:

 $F = \frac{1}{2} B (q_{\parallel} u)^2 + \frac{1}{2} D (q_{\perp} u)^2$

Leads to diffuse 'halo': $I(q) = I_0 / (B q_{II}^2 + D q_{\perp}^2)$

Just like in ordinary crystals but (highly) anisotropic

Short wavelength undulations: n=Const (e.g., due to high splay energy) 'Sliding' layer undulations instead 27111- 050 $2\pi/L$

More exp. data: going 3D

Undulation Properties of the Lamellar Phase of a Diblock Copolymer: SAXS Experiments

Petr Štěpánek*

Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic

Frédéric Nallet

Centre de recherche Paul-Pascal, CNRS, avenue du Docteur-Schweitzer, F-33600 Pessac, France

Olivier Diat

DRFMC/SI3M/PCI, CEA-Grenoble, 17 avenue des Martyrs, F-38054 Grenoble Cedex 09, France

Kristoffer Almdal

The Danish Polymer Centre, Department of Solid State Physics, Risø National Laboratory, P.O. Box 49. DK-4000 Roskilde, Denmark

Pierre Panine

Installation européenne de ravonnement synchrotron, ESRF, Boîte postale 220, F-38043 Grenoble Cedex, France

Received November 30, 2001

Are there more examples?

7287

Conclusions: smectic

Undulation fluctuations:

- splay
- slide
- The slide undulations do not lead to Landay-Peierls instability
- Demonstrated in goethite
- Similar story in block co-polymers? [Stepanek et al]
- Indications of similar fluctuations in columnar discotic

Acknowledgements

- J. Hilhorst, D. Byelov, E. van den Pol, G.J. Vroege, H.N.W. Lekkerkerker, Utrecht
- W. Bouwman, Delft
- K. Kvashnina, A. Snigirev, ESRF
- V. Abramova, A. Sinitskii, K. Napolskii, A. Eliseev, Moscow
- S. Grigoriev, N. Grigoryeva, A. Chumakov, A. Vasilieva, St. Petersburg

Universiteit Utrecht

The conclusions

- Colloids: lot of fun
- Microradian x-ray diffraction: Mind the coherence

Fine structural details on

- structure
- disorder
- fluctuations

