

High-flux ILL reactor

Experimental neutron facility

Institut Laue-Langevin (ILL), Grenoble, France World Leader in Neutron Research (Condensed matter, Magnetism, Chemistry, Biology, Crystallography, Materials, Nuclear and Particle Physics)

Experimental neutron facility

At ILL: ~450 staff members, including ~70 scientists, ~20 Ph.D. students.

4 scientists in fundamental physics; 4 scientists in nuclear physics... 1.5 => COLLABORATIONS!!!

3000 visiting scientists per year

GRANIT-2010 Workshop 14-19 February 2010, Les Houches, France

Countries ~12 Europe, Asia, USA, Australia

INSTITUT MAX VON LAUE - PAUL LANGEVIN

V.V. Nesvizhevsky

NEUTRONS FOR SCIENCE Gravitational and centrifugal quantum states of neutrons

1. Gravitational quantum states of neutrons

2. GRANIT project

3. Centrifugal quantum states of neutrons

Gravitational quantum states of neutrons

Quantum states of neutrons in the Earth's gravitational field

NEUTRONS

Valery V. Nesvizhevsky*, Hans G. Börner*, Alexander K. Petukhov*, Hartmut Abele†, Stefan Baeßler†, Frank J. Rue߆, Thilo Stöferle†, Alexander Westphal†, Alexei M. Gagarski‡, Guennady A. Petrov‡ & Alexander V. Strelkov§

* Institute Laue-Langevin, 6 rue Jules Horowitz, Grenoble F-38042, France † University of Heidelberg, 12 Philosophenweg, Heidelberg D-69120, Germany ‡ Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina, Leningrad reg. R-188350, Russia

§ Joint Institute for Nuclear Research, Dubna, Moscow reg. R-141980, Russia

The discrete quantum properties of matter are manifest in a variety of phenomena. Any particle that is trapped in a sufficiently deep and wide potential well is settled in quantum bound states. For example, the existence of quantum states of electrons in an electromagnetic field is responsible for the structure of atoms¹⁶, and quantum states of nucleons in a strong nuclear field give rise to the structure of atomic nuclei¹⁷. In an analogous way, the gravitational field should lead to the formation of quantum states. But the gravitational force is extremely weak compared to the

Figure 1 Wavefunctions of the quantum states of neutrons in the potential well formed by the Earth's gravitational field and the horizontal mirror. The probability of finding neutrons at height *z*, corresponding to the *n*th quantum state, is proportional to the square of the neutron wavefunction $\psi_n^2(z)$. The vertical axis *z* provides the length scale for this phenomenon. E_n is the energy of the *n*th quantum state.

NATURE | VOL 415 | 17 JANUARY 2002 | www.nature.com

© 2002 Macmillan Magazines Ltd INSTITUT MAX VON LAUE - PAUL LANGEVIN

Choosing a quantum system

- 1) Electrical neutrality (usually gravitational interaction of an object with surface is much weaker than other interactions)
- 2) Long life-time 3) Small mass $\left(\Delta V \cdot \Delta x \approx \frac{\hbar}{\Delta \tau}\right)$
- Energy (effective temperature) of UCN is extremely 4) low; it is not equal to the surface temperature (the temperature of neutrons in gravitational quantum states is ~10⁻⁸K)

Neutron avobe mirror in gravity field

(mirror represents nearly infinitely high and sharp potetial step)

> Energy of quantum states, in Bohr-Zommerfeld approximation, equals :

$$E_n \approx \sqrt[3]{\left(\frac{9 \cdot m_n}{8}\right) \cdot \left(\pi \cdot \hbar \cdot g \cdot \left(n - \frac{1}{4}\right)\right)^2}$$

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Selection and measurement of vertical and horizontal components of neutron velocity:

Maximum vertical velocity is defined by height of scatterer/absorber above mirror

The range of horizontal neutron velocities is defined by relative position of plates in the entrance collimator and the slit between mirror and scatterer

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Experimental installation and method Model of tunneling through gravitational barrier

07.04.11

FOR SCIENCE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

« Integral » method; soft spectrum

INSTITUT MAX VON LAUE - PAUL LANGEVIN

« Differential » method, position-sensitive detectors

A method to increase the spatial variation of neutron density

« Differential » method, position-sensitive detectors

INSTITUT MAX VON LAUE - PAUL LANGE

Remember: flow-through mode; modest energy resolution

depends on the relative position of the absorber and mirror. To limit it is not all velocity component we use an additional entry collimator. The relative height and the entry collimator can be adjusted.

Probability of transition

FOR SCIENCE

$$E_i - E_j = \hbar \cdot w_i$$

$$v_{21} \approx 256 Hz$$

$$\delta E_{\rm min} \approx 10^{-18} eV$$

$$\frac{\delta E_{\min}}{E_2 - E_1} \approx 10^{-6}$$

Transitions could be excited, for instance:

- By periodically varying magnetic field gradient;

-By periodically varying local gravitational field;

-By oscillating the mirror (periodic variation of optical nuclear potential)

Now: storage mode, long observation time and high energy resolution

Figure 2 Layout of the experiment. The limitation of the vertical velocity component depends on the relative position of the absorber and mirror. To limit the horizontal velocity component we use an additional entry collimator. The relative height and size of the entry collimator can be adjusted.

07.04.11

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Storage of UCN in gravitational quantum states

QUANTUM LEVELS LIFETIMES DUE TO NOISE-LIKE PERTURBATIONS

NEUTRONS FOR SCIENCE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Transitions between gravitational quantum states Quantum trap 30cm by 30cm; Height of edges 0.5mm

07.04.11

INSTITUT MAX VON LAUE - PAUL LANGEVIN

GRANIT Assembling the spectrometer

NEUTRONS FOR SCIENCE

GRANIT Extraction, transport, and storage mirrors; Clean room NEUTRONS FOR SCIENCE

Installation of GRANIT spectrometer at the level C at ILL

Installation of GRANIT spectrometer at the level C at ILL

INSTITUT MAX VON LAUE - PAUL LANGEVIN

GRANIT and UCN source

INSTITUT MAX VON LAUE - PAUL LANGEVIN

GRANIT Control of magnetic fields, vacuum chamber

07.04.11

NEUTRONS FOR SCIENCE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Installation of GRANIT spectrometer at the level C at ILL

Installation of GRANIT spectrometer at the level C at ILL

 $7.2 \times 10^8 \text{ n cm}^{-2} \text{s}^{-1}$

GRANIT on methods of excitation the transitions

NEUTRONS FOR SCIENCE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

The phenomenon of gravitational quantum states of neutrons could be used in various applications, as apriory it provides a very « clean » system with well-defined quantum states.

- -Contraints for short-range forces;
- -Constrains for axion-like forces;
- -Constrains for neutron electric charge;
- -Neutron quantum optics;
- -UCN reflectometry;
- -Quantum revivals;
- -Constrains for logarithmic term in Schrödinger equation;
- -Loss of quantum coherence;
- -UCN extraction, transport, tight valves;
- -Study of thin surface layers;
- -etc....

Constrains for short-range forces

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Constrains for short-range forces

INSTITUT MAX VON LAUE - PAUL LANGEVIN

- 1. First observation of quantum states of ultracold neutrons in gravitational field above mirror
- 2. First direct demonstration (and still the only one!) of quantum states of matter in gravitational field
- 3. Applications of this phenomenon in fundamental and applied physics
- 4. New gravitational spectrometer GRANIT, with all parameters improved by many orders of magnitude compared to the first setup, is going to become operational this year

FOR SCIENCE

R. Cubitt, V.V. Nesvizhevsky, K.V. Protasov, A.Yu. Voronin

LETTERS

PUBLISHED ONLINE: 13 DECEMBER 2009 | D/0I: 10.1038/NPHYS1478

Nature Physics, 6, 114-117 (2010)

Neutron whispering gallery

Valery V. Nesvizhevsky¹*, Alexei Yu. Voronin², Robert Cubitt¹ and Konstantin V. Protasov³

The 'whispering gallery' effect has been known since ancient times for sound waves in air¹², later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on³⁻⁶. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms^{7,8} and neutrons⁹. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. Here, we present for the first time the quantum whispering-gallery effect for cold neutrons. This phenomenon provides an example of an exactly solvable problem analogous to the 'quantum bouncer'¹⁰; it is complementary to the recently discovered gravitationally bound quantum states of neutrons¹¹. These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a pure quantum state¹². Deeply bound whispering-gallery states are long-living and weakly sensitive to surface potential; highly excited states are short-living and very sensitive to the wall potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions¹³⁻¹⁵, quantum neutron optics and surface physics effects¹⁶⁻¹⁸.

The classical whispering-gallery phenomenon can be understood

Figure 1 A scheme of the neutron centrifugal experiment. 1: Classical trajectories of incoming and outgoing neutrons, 2: cylindrical mirror, 3: neutron detector, 4: quantum motion along the mirror surface. Inset: A photo of the single-crystal cylindrical silicon mirror used for the presented experiments, with an optical reflection of black stripes for illustrative purposes.

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Propagation of sound (or other) wave in loss-free medium in 3-D space without boundaries

Known phenomenon of "Whispering Gallery":

Proragation of sound in closed building (distance r_{AB} is measured along surface)

 J. W. Strutt Baron Rayleigh, *The Theory of Sound* (Macmillan, London 1878), Vol. 2.
J. Pawleigh Philos Mag. 27, 100 (1914)

Known phenomenon of "Whispering Gallery":

Proragation of sound in closed building (distance r_{AB} is measured along surface)

 J. W. Strutt Baron Rayleigh, The Theory of Sound (Macmillan, London 1878), Vol. 2.

[2] L. Rayleigh, Philos. Mag. 27, 100 (1914).

Known phenomenon of "Whispering Gallery":

Proragation of sound in closed building (distance r_{AB} is measured along surface)

Whales are supposed to communicate at huge distances using analogous effect in surface ocean water layers (due to gradient of salt concentration, thus due to gradient of refractive index).

Other examples

Analogous phenomena are observed and used in optics, for radio-, Roentgen waves ...

[3] A. N. Oraevsky, Quantum Electron. 32, 377 (2002).

[4] K. J. Vahala, Nature (London) 424, 839 (2003).

07.04.11

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Radio: Debye, P. Der lichtdruck auf kugeln von beleibigem material. *Ann. Physik* **30**, 57-136 (1909).

In optics, for example: to stabilize laser frequency, for non-linear signal transformation

Neutron whispering gallery / proposal

PHYSICAL REVIEW A 78, 1 (2008)

Centrifugal quantum states of neutrons

V. V. Nesvizhevsky^{*} and A. K. Petukhov Institut Laue-Langevin (ILL), 6 rue Jules Horowitz, F-38042, Grenoble, France

K. V. Protasov

Laboratoire de Physique Subatomique et de Cosmologie (LPSC), IN2P3-CNRS, UJFG, 53, Avenue des Martyrs, F-38026, Grenoble, France

> A. Yu. Voronin P.N. Lebedev Physical Institute, 53 Leninsky prospekt, 119991, Moscow, Russia (Received 24 June 2008)

We propose a method for observation of the quasistationary states of neutrons localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi potential. This phenomenon is an example of an exactly solvable "quantum bouncer" problem that can be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop a formalism that describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Massive particle, sliding along curved mirror surface is settled, under certain conditions, in quasi-stationarry quantum states

Such a phenomenon has been considered (but not yet observed) for ultracold atoms:

- Mabuchi H. & Kimble H.J. Atom galleries for whispering atoms – binding atoms in stable orbits around an optical resonator. *Opt. Lett.* **19**, 749-751 (1994).

- Vernooy D. M. & Kimble H.J. Quantum structure and dynamics for atom galleries. *Phys. Rev. A* **55**, 1239-1261 (1997).

Characteristic parameters

Cold neutrons with a velocity of ~10³ m/s, sliding along cylindrical mirror with a radius of a few cm

Two velocity components

If the characteristic size of quantum states and quasiclassical distance between two collisions are much smaller than the mirror radius then tangential and longitudal motions could be separated

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Energy of quantum states in Bohr-Zommerfeld approximation :

Illustration for quantum motion of an object above mirror in gravitational field and that in accelerating frame. Positions of the ball correspond to its most probable heights in 5th quantum state. The vertical scale corresponds to the neutron mass.

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Methods of observation

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Methods of observation

Neutrons tunneling IN quantum states

A small fraction of neutrons could tunnel into quasistationary quantum states; they populate mainly short-living highly-excited quantum states

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Neutrons tunneling IN quantum states

Solid lines define « classical » shape of the signal; horizontal line indicates estimation of the neutron wavelength resulting from the uncertainty principle

Scattering probability as a function of neutron wavelength (axis y) and scattering angle (axis x)

Scattering probability as a function of scattering angle and neutron wavelength

Deviation probability

theory/experiment

Results

Neutrons tunneling OUT of quantum states

Neutrons populate quantum states states through edges of a truccated cylinder and tunnel out through the triangular potential barrier

Methods of observation

D17 instrument at the ILL

Neutrons entering from edge of truncated cylindrical mirror

- 1) Tangential neutron velocity is defined by time-of-flight method;
- 2) Scattering angle (radial velocity) is measured in a position-sensitive neutron detector.

Results

Neutrons entering from mirror edge

Theory

V.V. Nesvizhevsky

31.0

INSTITUT MAX VON LAUE - PAUL LANG $\varphi[deg]$

Sensivity to additional forces

b=0

b=4nm

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Sensitivity to additional forces

A STATE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Applications

- 1. First observation of quasi-stationary quantum states of cold neutrons in vicinity of curved mirror surface: neutron whispering gallery
- 2. First direct demonstration of the weak equivalence for an object in a quantum state.
- 3. Long lifetimes of neutrons in the quantum states allow us to use this phenomenon for precision studies of surface potentials and probably for constraining fundamental short-range potentials

FOR SCIENCE

(optional part) Nanoparticle-powder reflectors for cold and very cold neutrons

1. Neutron scattering on nanoparticles.

FOR SCIENCE

- 2. Reflection of very cold neutrons (VCN) from nanoparticle powders.
- **3. Storage** of VCN in traps.
- 4. Quasi-specular reflection of cold neutrons from powders.
- 5. Possible applications.
- 6. Behavior of nanoparticles in high radiation fluxes.

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Optimum: neutron wavelength λ_n is approximately equal to the nanoparticle size d

Neutron scattering on nanoparticles Diamond nanoparticles

Diamond nanoparticles is an evident candidate because of exceptionally high optical potential of diamond; nanoparticles of diamond are available in powders; such powders are not too expensive

probability

Neutron scattering on nanoparticles Theoretical description

V.V. N., G. Pignol and K.V. Protasov (2007). "Nanoparticles as a possible moderator for an ultracold neutron source." International Journal of Nanoscience 6(6): 485-499.

We neglected the relatively complex internal structure of the nanoparticle, choosing to modulate it as a uniform sphere. The neutron-nanoparticle elementary interaction was calculated using the first Born approximation. The amplitude for a neutron with energy $\hbar^2/2mk^2$ to be scattered at a spherical nanoparticle with radius *R* and Fermi potential *V*, at an angle θ is equal to

$$f(\theta) = -\frac{2m}{\hbar^2} V R^3 \left(\frac{\sin(qR)}{(qR)^3} - \frac{\cos(qR)}{(qR)^2} \right)$$
(1)

where $q = 2k \sin(\theta)$ is the transferred momentum. The total elastic cross-section is therefore equal to

$$\sigma_s = \int |f|^2 d\Omega = 2\pi \left| \frac{2m}{\hbar^2} V \right|^2 R^6 \frac{1}{(kR)^2} I(kR)$$

where

$$I(kR) = \frac{1}{4} \left(1 - \frac{1}{(2kR)^2} + \frac{\sin(4kR)}{(2kR)^3} - \frac{\sin^2(2kR)}{(2kR)^4} \right).$$

Fig. 4. The size distribution of the diamond nanoparticles in the powder "ultradiamond90".

(3)

Neutron scattering on nanoparticles Theoretical description

V.V. N., G. Pignol and K.V. Protasov (2007). "Nanoparticles as a possible moderator for an ultracold neutron source." International Journal of Nanoscience 6(6): 485-499.

FIG. 1: Elastic and absorption cross sections as a function of neutron velocity, for three values of the deuterium nanoparticles' radii: 1, 2, and 5 nm.

Neutron scattering on nanoparticles Intermediate conclusion

V.V. N., G. Pignol and K.V. Protasov (2007). "Nanoparticles as a possible moderator for an ultracold neutron source." International Journal of Nanoscience 6(6): 485-499.

- Analytical theoretical description is available
- Diamond is the optimum material
- The optimum nanoparticle size is about 5nm

NEUTRONS FOR SCIENCE

Reflection of very cold neutrons from the powders Scheme of the experiment

V.V. N., E.V. Lychagin, A.Yu. Muzychka, A.V. Strelkov, G. Pignol, and K.V. Protasov (2008). "The reflection of very cold neutrons from diamond powder nanoparticles." <u>Nuclear Instruments and Methods A</u> 595: 631-636.

Fig. 1. The experimental setup (view from above).

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Reflection of very cold neutrons from the powders Experimental setup

V.V. N., E.V. Lychagin, A.Yu. Muzychka, A.V. Strelkov, G. Pignol, and K.V. Protasov (2008). "The reflection of very cold neutrons from diamond powder nanoparticles." <u>Nuclear Instruments and Methods A</u> 595: 631-636.

Reflection of very cold neutrons from the powders Experimental results NEUTRONS FOR SCIENCE

PF2

Reflection of very cold neutrons from the powders Experimental results

Scattering is very efficient !

PF2

Reflection of very cold neutrons from the powders Experimental results

Scattering is elastic !

FOR SCIENCE

Fig. 6. The neutron count rate is presented as a function of the time of flight of the neutrons with an average initial velocity of 60 m/s. The zero time is synchronized with opening the chopper. The black circles correspond to the initial neutron spectrum. The empty circles indicate the data for the spectrum of neutrons scattered to an angle of 150°. The thickness of the ultradiamond90 powder sample is equal to 2 mm. The squares show results for the scattering of neutrons at a polyethylene sample with a thickness of 2 mm, measured at the same counter.

Reflection of very cold neutrons from the powders Intermediate conclusion

V.V. N., E.V. Lychagin, A.Yu. Muzychka, A.V. Strelkov, G. Pignol, and K.V. Protasov (2008). "The reflection of very cold neutrons from diamond powder nanoparticles." <u>Nuclear Instruments and Methods A</u> 595: 631-636.

- High efficiency of reflection of very cold neutrons from powders of diamond nanoparticles is proven experimentally
- The reflection is elastic

Storage of very cold neutrons in traps Scheme of the experiment

Storage of very cold neutrons in traps Experimental setup

E.V. Lychagin, A.Yu. Muzychka, V.V. N., G. Pignol, K.V. Protasov, and A.V. Strelkov (2009). "Storage of very cold neutrons in a trap with nano-structured walls." <u>Physics Letters A</u> 679: 186-190.

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Storage of very cold neutrons in traps Experimental results

E.V. Lychagin, A.Yu. Muzychka, V.V. N., G. Pignol, K.V. Protasov, and A.V. Strelkov (2009). "Storage of very cold neutrons in a trap with nano-structured walls." <u>Physics Letters A</u> <u>679: 186-190.</u>

PF2

Storage of very cold neutrons in traps Experimental results

E.V. Lychagin, A.Yu. Muzychka, V.V. N., G. Pignol, K.V. Protasov, and A.V. Strelkov (2009). "Storage of very cold neutrons in a trap with nano-structured walls." <u>Physics Letters A 679: 186-190.</u>

FOR SCIENCE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Storage of very cold neutrons in traps Intermediate conclusion

E.V. Lychagin, A.Yu. Muzychka, V.V. N., G. Pignol, K.V. Protasov, and A.V. Strelkov (2009). "Storage of very cold neutrons in a trap with nano-structured walls." <u>Physics Letters A</u> <u>679: 186-190.</u>

- The probability of reflection of very cold neutrons from powder of diamond nanoparticles is measured as a function of the neutron velocity and the powder treatment
- Very cold neutrons can be stored in closed traps !
- The powders of nanoparticles "bridge the gap" between supermirrors and reflectors for thermal neutrons