RTOF-метод в нейтронных дифрактометрах высокого разрешения

Кудряшев В.А. Петербургский институт ядерной физики

Принцип работы RTOF-метода

Разрешающая способность RTOF-метода

Действующие RTOF-дифрактометры на ИБР-2М

Сравнение RTOF-метода на реакторе непрерывного действия и на длинно-импульсном источнике.

Классический ТОГ-дифрактометр

Классический ТОF-дифрактометр, продолжение

Интенсивность нейтронов на детекторе

$$z(t) = \int_0^{T_s} x^{cl} (t - \tau) s(\tau) d\tau + b_0 = \frac{\Delta}{T_s} s^{cl}(t) + b_0$$

Ожидаемая величина счета в і-м канале анализатора для:

стационарного реактора

$$Z_{i} = \frac{T_{m}}{T_{s}} \int_{t_{i}-\frac{1}{2}\Delta}^{t_{i}+\frac{1}{2}\Delta} z_{i}(t)dt = T_{m}\frac{\Delta}{T_{s}} \left(\frac{\Delta}{T_{s}}s_{i}^{cl}+b_{0}\right)$$

импульсного реактора

$$Z_i = T_m \frac{\Delta}{T_s} \left(s_i^{cl} + b_0 \right)$$

1

Величина дисперсии в і-канала анализатора для:

стационарного реактора

импульсного

реактора

$$\sigma^{2}[s_{i}^{cl}] = T_{m} \frac{\Delta}{T_{s}} \left(\frac{\Delta}{T_{s}} s_{i}^{cl} + 2b_{0}\right)$$
$$\sigma^{2}[s_{i}^{cl}] = T_{m} \frac{\Delta}{T_{s}} \left(s_{i}^{cl} + 2b_{0}\right)$$

Фурье-прерыватель

Основные соотношения для RTOF-метода

Интенсивность нейтронов на детекторе при фиксированной частоте

$$z^{(\omega)}(t) = \frac{1}{2} \int_0^{T_s} x^{(\omega)}(t-\tau) s(\tau) d\tau + b_0$$

Используем опорный сигнал $y^{(\omega)}(t)$ и интенсивность нейтронов $z^{(\omega)}(t)$ для образования взаимной корреляционной функции

$$\Delta Z^{(\omega)}(\tau) = \int_0^{\Delta t^{(\omega)}} z^{(\omega)}(t) \cdot y^{(\omega)}(t-\tau) dt$$

Фурье-прерыватель изменяет частоту ω модуляции нейтронного пучка от 0 до $\omega_{max} = \Omega$ согласно весовой функции $g(\omega)$. Интегрируя $\Delta Z^{(\omega)}(\tau)$ по ω ОТ 0 до $\omega_{max} = \Omega$, получим :

$$Z(\tau) = c \int_0^{T_s} s(\tau') R(\tau - \tau') d\tau' + (S_0 \bar{x} + B_0) \bar{y}$$

Рассмотрим явный вид функции разрешения *R(т)*, чтобы понять, от каких параметров она зависит.

Функция разрешения *R(т)* для RTOF-метода

$$R(\tau) = \frac{1}{C} \sum_{r=1}^{\infty} [a_r F_C(r\tau) + b_r F_S(r\tau)]$$

1. фаза *φ*₀=0

$$F_{C}(x) = \int_{0}^{\Omega} g(\omega) \cos(\omega x) d\omega$$
$$a_{r} \neq 0$$

 $b_r = 0$

2. фаза *φ*₀=π/2

Функция разрешения *R(τ), продолжение*

Случай, когда сдвиг фазы между $x^{(\omega)}(t)$ и $y^{(\omega)}(t)$ равен $\varphi_0=0$

$$g_0(u) = \sqrt{\frac{2}{\pi}} \cdot \hat{\sigma} \cdot e^{-\frac{\hat{\sigma}^2 u^2}{2}}$$

 $g_0(u)$ -распределение частот в "Фурье-трансформанте". Реализуется посредством изменения скорости вращения Фурье-прерывателя в соответствии $C g_0(u)$. $g_0(u)$ иногда называют частотным окном , $u=\omega/\Omega$ —относительная частота.

В каждом цикле измерения частота модуляции ω меняется от ω =0 до ω_{max} = Ω .

После подстановки коэффициентов разложения x(t) и y(t) в выражение для $R_{\tau 0}(\tau)$ получим:

$$R_{\tau 0}(\tau) = \frac{1.011}{\sqrt{2\pi} \cdot \sigma_{\tau}} \left(e^{-\frac{\tau^2}{2\sigma_{\tau}^2}} - \frac{1}{3^3} e^{-\frac{(3\tau)^2}{2\sigma_{\tau}^2}} + \frac{1}{5^3} e^{-\frac{(5\tau)^2}{2\sigma_{\tau}^2}} \mp \cdots \right)$$

Аналогично ищется выражение для $R_{t1}(\tau)$ в случае $\varphi_0 = \pi/2$ и $g_1(u)$, $g_1(u)$ первая производная от $g_0(u)$.

Форма функции разрешения R(τ)

При скорости вращения от 0 до 6000 об/мин и 1024 щелях на диске величина Δ_{τ} равна: Δ_{τ} =8.8 мкс

Связь между $\hat{\sigma}$ и σ_{τ} имеет вид: $\sigma_{\tau} = \hat{\sigma} /_{\Omega}$ Для значений $\hat{\sigma} \approx 2.5$ имеет место оценочная формула: $\Delta_{\tau} = \frac{0.94}{f_{m}}$

Функция разрешения *R(τ)*, примеры.

Intensität

Функция разрешения *R(τ)*, примеры.

Функция разрешения $R(\tau)$, влияние границы Ω

Функция разрешения $R(\tau)$, влияние формы y(t)

 $R_{\tau 0}(\tau)$

Вклад членов разложения c r=1, r=3 и r=5.

3х - уровневый сигнал подавляет гармонику r=3 на порядок

Пояснение работы RTOF-дифрактометра

FSS-Video

Действующие RTOF-дифрактометры, ЛНФ ОИЯИ – Дубна, http://www.jinr.ru

Experimental Facilities of IBR-2

ФДВР – Фурье-дифрактометр высокого разрешения, Ref. A.M.Balagurov & all

ФДВР — Фурье-дифрактометр высокого разрешения, Фрагменты спектра, измеренные с *Дd/d* = 0.009

Ref. A.M.Balagurov & all

Новый детектор обратного рассеяния на основе ZnS(Ag)/⁶LiF, предложение

Ring	Ω , str			
0	0.050			
1	0.202			
2	0.208			
3	0.216			
4	0.225			
5	0.237			
6	0.252			
7	0.202			
8	0.221			
Σ	1.813			

Geometrical contribution to the resolution function for sample of 5x5x5 mm³

1	2	3	4	5	6	7	8
3.7E-4	5.4E-4	6.1E-4	6.7E-4	7.3E-4	7.8E-4	8.3E-4	8.8E-4

Особенности Фурье-метода на длинно--импульсных источниках

 $Z_i = S_i + \frac{1}{2}Z_{0p}$

 $S_i = c \frac{1}{2} T_m \frac{\Delta}{T_s} s_i^r$

 $\sigma^2[S_i] \simeq \frac{1}{2} Z_{0p}$

 $c \sim 1$

ожидаемая величина счета в і-м канале

ожидаемая величина спектра в і-м канале

величина дисперсии в i-канала анализатора равна половине полного числа нейтронов под кривой низкого разрешения. Для стационарного реактора величина дисперсии постоянна по всему спектру и равна половине полного числа нейтронов

Школа ПИЯФ ФКС-2011, Кудряшев В.А.

Оценка фактора выигрыша для импульсного источника

Фурье-метод: достоинства, недостатки, проблемы

Позволяет получать малую временную ширину Δτ ~ 10 мкс для R(τ) что дает возможность при сравнительно коротких пролетных базах ~20—50 м реализовать прибор высокого разрешения. Позволяет использовать нейтронные пучки большого сечения. Наиболее эффективен на источниках с длинным импульсом 0.3-2 мс

Постоянная стат.ошибка в пределах пика. Это уменьшает чувствительность метода к малым пикам, расположенных на склоне больших пиков.

Из-за недостатков конструкции существующих Фурье-прерывателей наблюдается длинновременная нестабильность формы пиков.