Функциональные наноматериалы на основе диоксида церия: механизмы формирования, структура, свойства

В.К. Иванов, А.Е. Баранчиков, О.С. Иванова, Г.П. Копица

45 Школа ПИЯФ по ФКС, Рощино, 14.03.2011-19.03.2011

- защита от УФ-облучения;
- радиопротекторные применения;
- ✓ антиоксидантное действие, приводящее к увеличению продолжительности жизни микро- и макроорганизмов;
- ✓ защита от воздействия радикалов любого происхождения;
- ✓ применение в терапии злокачественных опухолей;
- противовирусная активность.

NB: нанокристаллическому диоксиду (CeO_2) присуща церия высокая кислородная нестехиометрия, обуславливающая способность его формы связывать активные радикалы); (в т.ч. кислорода способность многократно участвовать в редокс-процессах

1. Cohen C.A., Karfakis J.A., Kurnick M.D., Rzigalinski B.. FASEB J., 22, 624 (2008).

Разработанные методы синтеза диоқсида церия

NB: возможность направленного изменения размеров частиц и характера их агрегации.

Дифрактограммы образцов Микрофотографии нанопорошков CeO_{2-x} , CeO_{2-x} с различными размерами полученных осаждением из 0.08 M (а) частиц, полученных осаждением и 0.8 M (б) растворов $Ce(NO_3)_3$ в водно-из 0.02, 0.08, 0.3 и 0.8 M изопропанольной смеси (1:1). растворов $Ce(NO_3)_3$.

Синтез нанопорошков диоксида церия методом

гомогенного осаждения из водных растворов солей Ce(III) и Ce(IV)

Основные параметры, влияющие на размер частиц СеО_{2-х} при синтезе методом гомогенного осаждения: ✓температура синтеза √продолжительность синтеза ✓концентрация и мольное соотношение Се/ГМТА 7,5 -- 60°C 7,0 -– 90°C 'n 6,5 -6,0 -D_{OKP}, HM 5,5 -5,0 -4,5 4,0 -3,5 10 20 30 40 $v(\Gamma MTA)/v(Ce^{4+})$ Зависимость размеров ОКР СеО_{2-х} от мольного соотношения Ce(IV)/ГМТА при 60°С (□) и 90°С (■).

Зависимость диаметра частиц CeO_{2-x} от продолжительности синтеза при 60°С для растворов с разной концентрацией нитрата церия(III) (1 –0.1, 2 – 0.08, 3 – 0.06М).

Синтез нанопорошков диоксида церия методом гомогенного осаждения из водных растворов солей Ce(III) и Ce(IV)

Взаимно ориентированные ультратонкие нанопластины CeO_{2-х}.

Синтез нанопорошков твердых растворов на основе диоксида церия методом гомогенного осаждения

Зависимости параметров элементарных ячеек твердых растворов Ce_{1-y}R_yO_{2-x} от содержания допантов.

Зависимости размеров наночастиц твердых растворов Ce_{1-y}R_yO_{2-x} от содержания допантов. Синтез нанопорошков твердых растворов на основе диоксида церия методом гомогенного осаждения

методом гомогенного осаждения							
Допант	La	Pr	Nd	Sm	Eu	Er	Yb
Содержание допанта (номинальное/ по данным РСМА/ по данным лазерной масс-	0,05/ 0,05/ 0,05 0,10/ 0,10/ 0,09	0,05/ -/ 0.04 0,10/ -/ 0.09	0,05/ -/ 0.04 0,10/ -/ 0.10	0,05/ 0,04/ 0,05 0,10/ 0,08/ 0,09	0,05/ 0,05/ 0,05 0,10/ 0,09/ 0,10	0,05/ 0,04/ 0,05 0,10/ 0,08/ 0,10	0,05/ 0,04/ 0.06 0,10/ 0,09/ 0.10
спектрометрии*	0,15/ 0,14/ 0,15 0,20/ 0,18/ 0,19	0,15/ -/ 0.14 0,20/ -/ 0.20	0,15/ -/ 0.14 0,20/ -/ 0.19	0,15/ 0,14/ 0,15 0,20/ 0,18/ 0,19	0,15/ 0,15/ 0,15 0,20/ 0,18/ 0,20	0,15/ 0,13/ 0,14 0,20/ 0,18/ 0,20	0,15/ 0,14/ - 0,20/ 0,18/ 0.19

Синтез нанопорошков твердых растворов на основе диоксида церия методом гомогенного осаждения

NB: аналогичным методом были получены соединения более сложного состава (например, $Ce_{1-x-y}Yb_xEu_yO_{2-\delta}$, $Ce_{1-x-y}Er_xEu_yO_{2-\delta}$).

Высокотемпературный рост наночастиц диоксида церия

Зависимости размеров ОКР CeO_{2-x} от температуры отжига для образцов, синтезированных с применением различных методов быстрого и гомогенного осаждения.

Высокотемпературный рост наночастиц диоксида церия

различных температурах.

Образцы СеО_{2-х}, полученные отжигом при 700°С (а - криохимический, б – контрольный).

NB: Размеры частиц CeO_{2-х} определяются (а) способом нагрева (микроволновой, конвективный), (б) предысторией (состав прекурсора, доп. термообработка)

Механизм роста наночастиц диоксида церия в гидротермальных условиях

Функции распределения по размерам частиц $D_V(R)$ для образцов, синтезированных при различных температурах и продолжительностях ГТМВ обработки (*a* – образцы Ce-120°C-15мин (1) и Ce-210°C-15мин (2); *б* – образцы Ce-120°C-3ч (1) и Ce-210°C-3ч (2)).

Нанопорошки (в т.ч. наностержни и нанопластинки) диоксида церия

варьировать от 2 до 100 нм

Стабильные водные золи диоксида церия

- СеО₂ + полиакриловая кислота
- СеО₂ + ионообменные смолы
- СеО₂ + цитрат натрия и

+ т.д.

NB: Систематически исследованы механизмы фазообразования и роста частиц CeO₂ в золях при гидротермальном и сольвотермальном синтезе

NB: Показано, что золи стабильны при различных pH, а также в различных буферных растворах и ростовых средах

Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва 18

NB:

Стабильные водные золи диоксида церия

Получение золей диоксида церия, стабилизированных цитратом и полиакрилатом натрия

Микрофотография частиц CeO_{2-x} в цитратном золе (а); микрофотографии клеток L929 (б – контроль; в – обработка водным золем CeO_{2-x})

NB: возможность направленного варьирования размера (2-8 нм) и формы частиц

Стабильность золой CeO₂ в неполярных растворителях

NB: синтезированные коллоидные растворы стабильны в течение длительного времени

Зависимость параметра қристалличесқой ячейқи от размера частиц наноқристалличесқого диоқсида церия

Исследование антиоксидантной активности нанокристаллического диоксида церия по отношению к антоцианам

NB: диоксид церия в значительной степени ингибирует окисление антоцианов под действием пероксида водорода

1 – раствор антоциана;
2 – раствор антоциана + 700 мкМ пероксида водорода + 70 мкМ наночастиц диоксида церия;
3 – раствор антоциана + 700 мкМ пероксида водорода + 140 мкМ наночастиц диоксида церия.

Исследование стабильности растворов *β*-қаротина в присутствии наноқристалличесқого диоқсида церия

NB:нанокристал-лическийдиоксидцериясущественноснижает окислениеβ-каротинанавоздухе

Динамика изменения концентрации β-каротина

Инақтивирование нитроқсильного радиқала наночастицами диоқсида церия

1 – контроль (без наночастиц CeO₂); **2** – наночастицы CeO₂ размером 3–5 нм; **3** – наночастицы CeO₂ размером 1–2 нм

NB: Наличие размерного эффекта

Воздействие нанокристаллического диоксида церия на бактерии Escherichia coli TG 1

NB: Уменьшение размера частиц
диоксида церия → увеличение
ферментативной активности
бактерий кишечной палочки
NB: Другие культуры; H₂O₂; UV

Цитотоқсичность наноқристалличесқого диоқсида церия

Водные	Культура клеток								
дисперсии наночастии	L929			EPT			VERO		
CeO ₂	СС ₀ , мкг/м л	СС ₅₀ , мкг/мл	СС ₁₀₀ , мкг/мл	СС ₀ , мкг/м л	СС ₅₀ , мкг/мл	СС ₁₀₀ , мкг/мл	СС ₀ , мкг/м л	СС ₅₀ , мкг/мл	СС ₁₀₀ , мкг/мл
A3	10	150	275	30	150	275	1000	н.у.	н.у.
A4	30	150	500	110	310	500	180	н.у.	н.у.
A5	5	45	100	15	50	200	175	н.у.	н.у.
A6	150	450	600	125	375	650	250	н.у.	н.у.
Б2	110	700	н.у.	100	н.у.	н.у.	180	н.у.	н.у.
Б3	125	н.у.	н.у.	100	н.у.	н.у.	180	н.у.	н.у.
Б4	250	550	1250	250	н.у.	н.у.	250	н.у.	н.у.
Полиакрилат	500	1125	2500	750	1000	2000	750	1000	н.у.

NB: Частицы диоксида церия (CeO₂) не являются цитотоксичными

Применение СеО₂ для защиты клеток от УФ-излучения

Размерные эффекты и структурно-чувствительные свойства нанокристаллического диоксида церия

Глубокая конверсия СО на индивидуальном нанокристаллическом диоксиде церия с различными размерами частиц Глубокая конверсия СО на нанесенных катализаторах на основе диоксиде церия

S _{ұд} , м²/г	D _{OKP} , HM	Параметр ячейки, Å (по данным КР/РФА)	Т 99% конверсии при повышении/ понижении температуры,	Катализатор	Т 99,5% конверсии, °С (4% CO, 2,05% О ₂ в Не)	Т 99,998% конверсии, °С (0,2% СО/8% О ₂ в N ₂₎
				5%Cu/CeO ₂	67	130
149	2.6	5.442/5.443	357/357	5%Co/CoO	180	260
126	3.3	5.426/5.425	310/270	5 /0C0/CeO ₂	100	200
		5 400/5 400	405/404	5%Fe/CeO ₂	275	375
110	4.5	5.423/5.422	405/401		005	0.05
100	7	5.418/5.414	430/430	5%NIMg/CeO ₂	285	305
	<u> </u>			5%Ni/CeO ₂	160	220

Размерные эффекты и структурно-чувствительные свойства нанокристаллического диоксида церия

Физико-химические характеристики и фотокаталитическая активность ряда образцов CeO_{2-х}

Образец	Температура отжига, °С	Удельная поверхность, м²/г	Размеры ОКР, нм	Параметр ячейки, нм	Скорость фотодеградации метилового оранжевого (<i>K</i> ₁), %/мин
CeO ₂ -1	60	150	4.6	0.5420	0.012
CeO ₂ -2	300	120	5.3	0.5418	0.056
CeO ₂ -3	400	95	6.4	0.5413	0.064
CeO ₂ -4	600	45	14.0	0.5411	0.164
TiO ₂ (P25)	_	55	25	_	0.598

NB: Аномальная зависимость фотокаталитической активности CeO_{2-x} от размера частиц и удельной поверхности.

Электрохимические характеристики СеО2

Образец	Размер частиц СеО ₂ , нм	Параметр ячейки СеО _{2-х} , нм	Моль Li на моль CeO ₂
Ce-1	5	0.5419	0.36
Ce-2	6	0.5413	0.27
Ce-3	8	0.5412	0.23
Ce-4	50	0.5410	0.18

Количество атомов лития, внедренного в структуру CeO₂, в зависимости от размера частиц диоксида церия

Изменение разрядной емкости электродов на основе образцов нанокристаллического CeO₂ (1 – Ce-1; 2 – Ce-2; 3 – Ce-3).

Благодарности

Н.М. Жолобак (Институт микробиологии и вирусологии НАН Украины)

Филипп Клаус Пранзас (GKSS Research Center, Germany)

А.Б. Щербаков (НУПТ)

А.С. Лермонтов (ИОНХ РАН)

Т.Л. Кулова (ИФХЭ РАН)