

University of Heidelberg

für Materialien und Energie

Advances in neutron imaging

M. Strobl

- I. Neutron imaging
- **II.** Energy resolved neutron imaging
- III. Dark field contrast imaging
- **IV.** Polarised neutron imaging
- **VI. Outlook & Discussion**

- ✓ Flux: 2.0x10⁸ n/cm²s
- ✓ Beam size: 5 x 3 cm²
- ✓ L/D ~ 70
 - A. Hilger, N. Kardjilov, M. Strobl et al., Phys. B (2006)

- ✓ Flux: 5.8x10⁶ n/cm²s (L/D 521)
- ✓ Beam size: 10 x 10 cm²
- ✓ L/D: 521, 261, 174

A. Hilger, N. Kardjilov, M. Strobl et al., Phys. B (2006)

Fig. a: Neutron radiography of a camera

Fig. b: Radiographic image of a camera made X-rays

Detector

recent developments

HZB: 25 μm

N. Kardjilov et al. to be submitted

n Imaging Applications

n Imaging Applications

R&D **Biology** & Agriculture Geology Archeology Paleontology Art History Material science & Engineering Industry etc.

- I. Neutron imaging
- **II.** Energy resolved neutron imaging
- III. Dark field contrast imaging
- **IV.** Polarised neutron imaging
- **VI. Outlook & Discussion**

Thickness of a homogeneous absorber

Monochromatic imaging

vent tube

M. Strobl et al. J. Appl. Cryst. (2007) 40

W.T., M. Strobl et al. APL (2006)

Bragg scattering analyses

Investigation on steel weld

resolution: 50 µm

preliminary results in cooperation with G. Kühne & G. Frei (PSI)

Energy selective imaging

T. Kandemur, master thesis 2008

J.R. Santisteban et al. NIM A 481 (2002) 765-768

- I. Neutron imaging
- **II.** Energy resolved neutron imaging
- III. Dark field contrast imaging
- **IV.** Polarised neutron imaging
- **VI. Outlook & Discussion**

Grating Interferometer

F. Pfeiffer et al. Phys. Rev.Lett. 96, 215505 (2006)

Dark field contrast

δ(x,y) source grating grating interferometer $P_{\theta}(t) = w(\theta, t)^{2} = \int_{path} \frac{\sigma(x, y)N(x, y)}{R^{2}(x, y)} \cdot ds$

M. Strobl et al. PRL (2008)

$$P_{\theta}(t) = w(\theta, t)^{2} = \int_{path} \frac{\sigma(x, y)N(x, y)}{R^{2}(x, y)} \cdot ds$$

M. Strobl et al. PRL (2008)

Dark field contrast

M. Strobl et al. PRL (2008)

Dark field contrast

HELMHOLTZ ZENTRUM BERLIN für Materialien und Energie

Phase and dark field contrast

Refractive index: phase absorption magn. phase $n(x, y, z, \lambda) = 1 - \delta(x, y, z, \lambda) - i\beta(x, y, z, \lambda) \pm \delta_B(x, y, z, \lambda, B)$

K.M. Podurets et al. Zh. Tekh. Fiz. 67 (1994) M. Strobl et al., APL (2007) Ch. Gruenzweig et al. APL (2008)

- I. Neutron imaging
- **II.** Energy resolved neutron imaging
- III. Dark field contrast imaging
- **IV.** Polarised neutron imaging
- **VI. Outlook & Discussion**

M. Schlenker, W. Bauspiess, W. Graeff, U. Bonse, H. Rauch Journ. of Magn. & Magn. Mat. 15-8 (1980) 1507-1509

K.M. Podurets, R.R. Chistyakov and S.Sh. Shil'shtein Zh. Tekh. Fiz. 67 (1994) 134-136

Badurek, G., Hochhold, M. & Leeb, H. *Physica B* 234–236 (1997) 1171–1173

N. Kardjilov, I. Manke, M. Strobl, A. Hilger et al. Nat. Phys. 4 (2008)

$$I(x, y) = I_0(x, y) \cdot \exp(-\int \sigma \cdot ds) \cdot \frac{1}{2} (1 + \cos \varphi(x, y))$$

YBCO

Flux pinning in polycrystalline Pb superconductor

N. Kardjilov, I. Manke, M. Strobl, A. Hilger et al. Nature Phys. 4 (2008)

Electric currents: Skin effect

I. Manke, N. Kardjilov, M. Strobl et al., JAP (2008)

Acknowledgement

N. Kardjilov	M. Dawson T. Kandemir	S. Keil O. Ebrahimi W. Treimer J. Banhart
I. Manke		
A.Hilger		

- E. Jericha, G. Badurek
- PAUL SCHERRER INSTITUT
- Ch. Grünzweig, F. Pfeiffer

P. Böni, M. Schulz

F. Bordenave, D. Jullien

Finally...

