Effects of alloying the magnetic shape memory material Ni-Mn-Ga with Cobalt

Katharina Rolfs, Markus Chmielus, Jan Magnus Guldbakke, Rainer Schneider, Winfried Petry

Outlook

- Motivation
- (Magnetic) Shape Memory Effect
- Sample Preparation SLARE
- Sample Characterization

Motivation

Magnetic shape memory effect

Application of the analysis of the second se

diffegnetice an interval of the twinboundaries \Rightarrow movement of the twinboundaries

 Without prestress and less than 170 mT, 5M-crystal shows a strain of ~4 % and exhibits max. strain below 340 mT.

- Limitation in operational temperature
- Brittleness of material

Magnetic shape memory effect in Ni-Mn-Ga

K.Rolfs et al. JMMM, 2008

Sample Preparation

- SLAg Remelting and Encapsulation technique
- Encapsulation of alloy avoids manganese loss
- Slag reacts with inclusions and dissolve ionic impurities as oxides and sulfides
- No reaction between alloy and crucible

A.Mecklenburg et al. DE 102004018664A1, 2005

Determination of composition

- Energy Dispersive X-Ray Spectrometry
- Deviation of several percent if no standard is given
- Preparing of standards
- Quantitative analyses by ICP-OES

Composition gradient in Ni-Mn-Ga-Co rods

homogeneous Co-Content, different Mn/Ga – ratio

 $Ni_{44}Co_6Mn_{31}Ga_{19}$

 $Ni_{44.6}Co_{5.4}Mn_{30.7}Ga_{19.3}$

Phase transition temperatures in Ni-Mn-Ga-Co

- Structural phase transition temperature increases with increasing Mn/Ga ratio
- Curie-temperature increases with increasing Cocontent
- T_M and T_C increase by substituting Ni with Co

Schematic of magneto-mechanical testing principle

Schematic Diagram of E3 (Angular Dispersive Technique)

Take off angle of monochromator [[°]]	65
Wavelength [nm]	0.1486
Collimation [']	open
FWHM standard powder [~ 0.3 (at 2theta = 90 °)
Resolution	$d/d \approx 1.4 \times 10-3$
Flux [n/cm2/s]	~ 5 x 10 ⁶
Detector	PSD 30 x 30 cm ²
Monochromator	Si (400), Double Focussing
XYZ Table	~ Max 300 Kg

Measurement technique

Ewald sphere (radius r = $2\pi / \lambda$)

Measurement technique

Simple Transformation to the Reciprocal Space.

Low temperature structures in Ni-Mn-Ga-Co

Stress – Strain – Behaviour in tetragonal Martensite

- twinning stress decreases with decreasing amount of Co
- reachable strain increases with decreasing Co content

Schematic Diagram of four cirlcle diffractometer D9 using hot neutrons

Distribution of cobalt in Ni-Mn-Ga lattice

770 Bragg reflections have been measured in mperature phase

$$= \sum_{j,\alpha} b_j \cdot e^{2\pi i \left(h \cdot u_\alpha + k \cdot v_\alpha + l \cdot w_\alpha\right)}$$

Fm-3m

• $\approx 80\%$ of Co on Ni-

places (1/4 1/4 1/4)

• $\approx 20\%$ of Co on Mnplaces ($\frac{1}{2}\frac{1}{2}\frac{1}{2}$)

Double Twinning in nonmodulated orthorhombic Martensite

Sequence of loading:

X.**Y**.**Z**

Stress plateau in x direction: **30MPa** Stress plateau in y direction: **95MPa** Stress plateau in z direction: -

Sequence of loading:

x.z.y

Stress plateau in x direction: **30MPa** Stress plateau in z direction: **60MPa** Stress plateau in y direction: -

Double Twinning in nonmodulated orthorhombic Martensite

Example

- *ab*-twinning followed by *bc*-twinning
- grey planes indicate twin planes of each twinning event *ab*-twinning: *a* and *b* axes interchange, *c* axis stays constant
- followed by *bc*-twinning: *b* and *c* axes interchange, *a* axis
 stays constant

. crystallographic axes permute cyclically

a.b,b.c,c.a

Magnetic field induced strain in modulated tetragonal Martensite

Ni-Mn-Ga alloyed with 0.8% Co

- T_M from 50°C to 65°C
- high T_c (100°C)
- Mechanical induced strain: 5%

Application in actuators

Acknowledgment

- Boise State University
- Helmholtz-Zentrum Berlin
- Institute Laue Langevin

Prof. Müllner Dr. Wimpory Dr. Brown

Thank you for your attention

BOISE STATE TIT WF