Ферромагнитные металлические нанокластеры в допированных манганитах: причины возникновения и роль в траспортных и магнитных свойствах

В.А. Рыжов, А.В. Лазута, П.Л. Молканов, В.П. Хавронин ПИЯФ

Я.М. Муковский, Д.А. Шулятев Московский государственный институт стали и сплавов

проблема

Ф кластеры в допированных дырками манганитах при $T^* > T_C$. Наблюдаются с образования ФИ основного состояния. Концентрация как правило, растет с допированием. Приводят к И-М переход при $T_{IM} > (<) T_C$.

- Причины образования.
- 1) Фаза Гриффитца. Разбавленный Ф Изинг.
- Особенная структура функции распределения.
- Ф кластеры при T < $T_C(1)$ → M(H) ∝ exp(- cT/H) cT/H >>1. Ненаблюдаемый эффект.

2) Ф Изинг + коррелированный беспорядок (R/a >>1).

 $J_0 >> J_d >> (a/R)^{1/\nu}$. Разброс $\tau(r)$, формирование Ф кластеров ($\tau(r) < 0$) при $T^* > T_{PC}$ (= $T_C(J_0) + J_d/J_0$) (размер ~ R), перколяционный сценарт перехода.

3) Гейзенберг? Переход на протекательном кластере невозможен.

4) Манганиты. И-М переход при Т_{IM} > Т_С. Фазовое сосуществование Кластеры металлические.

Эксперимент. La_{1-x}Sr_xMnO_{3.}

FIG. 4 (color online). (a) T-p diagram for the dilute FM Ising model [5]. (b) Conjectured schematic T-p diagram of the GP arising in a $\pm J$ random Ising model due to the competition of FM/AFM clusters; (c) observed Griffiths-phase boundaries within the established T-x phase diagram of LSMO [21]. The intersection (open circle) of T_G (spheres) with the magnetic boundary T_C (stars) coincides with the phase transition from the orthorhombic (O) to rhombohedral (R) structure (I = insulator, M = metal). Data for x = 0.06 and 0.07 were taken from Refs. [27,28], respectively. Lines are drawn to guide the eye.

The temperature dependencies of the linear susceptibility (v = 95 kHz) and amplitude of the third harmonic of magnetization (v=20 kHz) at h=10e. Insert in the panel shows the T - dependence of $1/4\pi\chi'$. T_c = 263 K. T_{DM} = 252 K. T_s = 280 K (R-O structural transition).

 $La_{0.83}Sr_{0.17}MnO_3$ The plot of the R(T).

Two phase components of the second harmonic of magnetization as the functions of the steady magnetic field H at some temperatures. $T^* \approx 310 \text{ K} > T_s = 280 \text{ K}$. $T_c = 263 \text{ K}$. $T_s = 280 \text{ K}$. $T_{DM} = 252 \text{ K}$. ImM₂(H,T) at T = 301 K \Leftrightarrow 3D isotropic F. At $T^* > T > T_c$ - anomalous response in weak $H(H_m \sim 10 \text{ Oe})$. Anomalous and normal signals coexist down to $T_c \rightarrow$ inhomogeneous magnetic state. The clusters appear in the R phase.

Transformation of the signal from 260.7 K down to 225.6 K (D – M transition).

La_{0.83}Sr_{0.17}MnO₃ Re $M_2(H,T)$ и Im $M_2(H,T)$ при разных значениях *H*. На вставках приведены зависимости Re $M_2(H = 0, T)$ и Im $M_2(H = 0, T)$.

И-М переход → зарядовая степень свободы.

Кластерное состояние ниже $T_{\rm C}$.

Двухзонная модель.

Перескок (t) (металлизация), Хунд (Ф), Ян – Теллер (J_{JT}) (локализация), сильное одноузельное отталкивание электронов (тенденция к фазовому разделению + ...). Зонная структура: локализованные состояния (поляроны, один уровень) + зона носителей (щель $\Delta \sim J_{JT}$). 1) ДМФ \rightarrow ФИ основное состояние, Ф обмен (виртуальный перескок локализованные состояния – зона и обратно J $\propto t^2/J_{JT}$). И-М переход при T \approx T_C. Возможен и при T \neq T_C.

2) Численный счет на 3D решетке с дальнодействующим кулоном. Сосуществование М и И областей в Ф основном состоянии (М кластеры в И матрице). Причины: сильное одноузельное отталкивание (фазовое разделение) + дальнодействующий кулон (деление на нанокластеры). Беспорядок не принципиален. Размер М кластеров- 8 – 10 постоянных решетки. С ростом допирования происходит перколяционный И-М переход.

Возможная модель для анализа Т эволюции кластерного состояния.

Two band model.

Spectral density ($E_{JT} = -0.5 \text{ eV}$, D = 1.2 eV, U = 5 eV, $J_F = 2 \text{ meV}$) : (a) x = 0.1, T = 0 (FI), (b) x = 0.3, T = 180 K ($< T_C = 240 \text{ K}$) (FM), occupied band states are shown shaded, (c) T = 350 K (PI). Vertical line is the *l* polaron level.

FIG. 1 (color online). Real space electronic distribution obtained from simulations on a 16³ cube. Magenta (darkest) denotes hole clumps with occupied *b* electrons, white (lightest) denotes hole clumps with no *b* electrons, cyan (2nd lightest) denote singleton holes, and light blue (2nd darkest) represents regions with ℓ polarons. Left: Isolated clumps with occupied *b* electrons (*b*-electron puddles). Right: Larger doping; percolating clumps. Inset: "macroscopic phase separation" absence of long range Coulomb interaction ($V_0 = 0.0$).

V.B. Shenoy et al., PRL 98, 066602 (2007)

THE END

Colossal Magnetoresistance (CMR) in mixed-valence manganites

- The largest CMR effects are observed in mixed-valence manganites.
 e.g. La_{1x}Ca_xMnO₃, La_{1x}Sr_xMnO₃
- The CMR is largest just above the ferromagnetic transition temperature

Электронная структура ионов Мп

Field splitting of the five-fold degenerate atomic 3*d* levels into lower *t* and higher *e* levels. The particular Jahn-Teller distortion sketched in the figure further lifts each degeneracy as shown. $J_{CF} \sim 2 \text{ eV}, J_{H} \sim 2 - 3 \text{ eV}, J_{TT} \sim 0.5 \text{ eV}, t \sim 0.3 \text{ eV}.$

Температурная зависимость поляризации проходящих через образец нейтронов. $P = P_0 \cdot exp(-1/3(\mu B/E)^2 k^2 R c^{1/3} L)$