

FlatCone

Mapping diffuse scattering in single crystals

Jiri Kulda

Institut Laue-Langevin, Grenoble (France)

FlatCone:

B. Detlefs, M. Kempa	ILL / Charles University, Prague	
J. Saroun	NPI AS CR, Rez near Prague	
P. Flores, S. Roux, S. Baudoin, C. Menthonex,		
F. Descamps, J. Locatelli, JP. Vernier, P. Thomas, F. Lapeyre,		
F. Horst	ILL	
JP. Vassali	ESRF	
JM. Bisson, G. Pastrello	AZ Systemes, Grenoble	
D. Mrazek, B. Lukas	Polovodice, Prague	
P. Steffens, M. Boehm, A. Hiess	ILL	
D. Hohlwein	HMI Berlin	
LP. Regnault	CEA Grenoble	
HB. Braun	University College Dublin	
J. Hlinka, S. Kamba, J. Petzelt	Inst. of Physics AS CR, Prague	
A. Boothroyd, A. Lewtas	Oxford University	

- 2. FlatCone software
- 3. Experimental data examples
- 4. Conclusions

FlatCone (I)

FlatCone multianalyzer (ThirtyThree Axis Spectrometer)

 angular coverage 	75 deg
 pixel width 	1.3 deg
 no. of pixels 	31
 SA distance 	765 & 1000 mm
 analyzer crystals 	Si 111
 cold neutrons 	k _f = 1.4 Å⁻¹
	∆E = 0 - 10 meV
 thermal neutrons 	k _f = 3 Å⁻¹
	∆E = 0 - 40 meV

FlatCone (I)

FC scan modes (II)

FC geometry

FC tilted geometry

Vanadium data

FlatCone & IN20 Si111, July 2006

• P= 58.3 MW, H13 & OS closed:	3 cts/channel/6000 sec (all Poissonian)
• EN = 15 meV, empty Orange:	14 cts/channel/100sec
• EN = 15 meV, CuGeO ₃ in Orange:	50 cts/channel/100 sec

IN20 Heusler/Heusler, July 2006

• EN = 15 meV, empty Orange:

25 cts/100 sec (NSF)

11 cts/100 sec (SF)

Data visualisation (I)

- addition, subtraction, combination, normalization of data sets
- display of intensity maps on linear and logarithmic scale
- extraction of linear scan data (interpolation, integration, projection)
- cuts through sets of E = const maps

Data visualisation (II)

Flat-cone resolution

Primary spectrometer. **IN20**

Multianalyzer: flat-cone bent single crystals (Si), 1 cm wide $2\theta_{\rm S}$ range = 15°

FC map simmulation

Relaxor ferroelectrics

- "ferroelectrics with a diffuse phase transition"
- giant dielectric permitivity
- strong piezoelectricity

• PMN (Pb(Mg_{1/3}Nb_{2/3})O₃)

• PZN-8%Pt (Pb(Zn_{1/3}Nb_{2/3})O₃ with 8% PbTiO₃)

Elastic diffuse scattering

Elastic diffuse scattering

FC tilted geometry

PMN diffuse scattering

LuFe₂O₄

8-Apr-10

IN20 FC LuFe₂O₄

IN20 FC LuFe₂O₄

Spin soliton chirality

CsCoBr₃ data

IN20 FlatCone

CsCoBr₃

IN20 FC CsCoBr₃

Two-soliton continuum, B = 3T, T = 40K, h0l plane, $\Delta l = l_+ - l_ \Delta E = 14 \text{ meV}$ $\Delta E = 15.75 \text{ meV}$ 4 3.53.5 3 3 2.5 2.5 ò $\mathbf{2}$ ď 1.5 1.5 Т 0.5 0.5 0 3 QX 0.5 1.5 2 2.5 3.5 4.5 5.5 1 4 5 0.5 1.5 2 2.5 3 3.5 4 4.5 3 OX. H.-B. Braun, J. Kulda, ILL Exp. report 4-01-695

Summary

- highly efficient mapping of inelastic response at $\Delta E = const$
- diverse scan modes available
- luminosity/channel ≈ 1/3 of TAS
- transverse resolution $\Delta Q \approx 1/2$ TAS
- good signal/noise
- routine operation on IN14, IN20

 angular coverage 	75 deg
 pixel width 	1.3 deg
 no. of pixels 	31
 SA distance 	765 & 1000 mm
 analyzer crystals 	Si 111
 cold neutrons 	k _f = 1.4 Å⁻¹
	∆E = 0 - 10 meV
 thermal neutrons 	k _f = 3 Å⁻¹
	∆E = 0 - 40 meV

Pending:

- polarization analysis insert ³He filter
- vacuum sample chamber

UBe₁₃

UBe₁₃

8-Apr-10

CoAl₂O₄

O. Zaharko, N. Christensen, M. Boehm and F. Yokaichiya unpublished, 2009

FlatCone & polarized neutrons

MagicPastis:

- hybrid of "Magic box" and PASTIS coils
- no blind angles
- magnetised mu-metal

