Особенности структурных переходов ОЦК-ГПУ

<u>¹⁾Ф.А. Кассан-Оглы, ¹⁾В.Е. Архипов,</u> ²⁾А.Е. Шестаков

¹⁾Институт физики металлов УрО РАН, Екатеринбург. ²⁾Российский федеральный ядерный центр – ВНИИТФ имени академика Е.И. Забабахина, Снежинск

Реферат

На основе псевдоспинового гамильтониана Изинга при учете взаимодействий между ближайшими соседями построена теория структурных фазовых превращений ОЦК—ГПУ в металлах с высокотемпературной ОЦК решеткой. При всех температурах рассчитана картина диффузного рассеяния, а также совместная перестройка исходных Брэгговских рефлексов и диффузного рассеяния в Брэгговские рефлексы при переходах в низкотемпературные фазы.

- В физике дифракции рентгеновских лучей обычно используют два основных типа эксперимента: либо рассеяние белого излучения на монокристалле – Лауэ-эксперимент, либо рассеяние монохроматического излучения на поликристалле или порошке – эксперимент Дэбая.
- Моно-Лауэ эксперимент это рассеяние монохроматического излучения, направленного на неподвижный монокристалл, и регистрация результата рассеяния на фотопленке.

Введение (продолжение)

• Из построения Эвальда следует, что при такой постановке эксперимента следует ожидать полного отсутствия рассеяния, либо случайного попадания в лучшем случае шубы около Брэгговского рефлекса (от обычного ТДР на фононах) на сферу Эвальда. Однако Лаваль в 1939 году поставил такой эксперимент на кристалле KCl. В нем была обнаружена весьма сложная картина диффузного рассеяния. Следующим важным этапом явилась работа Комеса, Ламбер и Гинье 1971, в которой проводился моно-Лауэ эксперимент на перовските KNbO₃ при разных температурах, и было обнаружено, что диффузное рассеяние теснейшим образом связано с ранее известным каскадом структурных фазовых переходов в этом кристалле: куб-тетрагон-орторомб-ромбоэдр.

Комес, Ламбер, Гинье 1971

5

Колебания плоскостей в ОЦК фазе и расчет амплитуды

Общие формулы

Интенсивность упругого рассеяния:

 \varDelta это вектор-амплитуда колебаний, $\sigma = \pm 1$.

- После громоздких расчетов получаем общую картину рассеяния в высокотемпературной ОЦК фазе:
- 1. Модулированные Брэгги

 $I_{Ep}(\mathbf{q}) = f^{2} \left[1 + \cos\frac{1}{2} \left(q_{x}a + q_{y}b + q_{z}c \right) \right] \cdot \cos^{2} \left(q_{x} + q_{y} \right) \Delta_{x\bar{y}} \cdot \cos^{2} \left(q_{y} + q_{z} \right) \Delta_{y\bar{z}} \cos^{2} \left(q_{z} + q_{x} \right) \Delta_{z\bar{x}} \\ \times \cos^{2} \left(q_{x} - q_{y} \right) \Delta_{xy} \cdot \cos^{2} \left(q_{y} - q_{z} \right) \Delta_{yz} \cos^{2} \left(q_{z} - q_{x} \right) \Delta_{zx} \cdot \delta(\mathbf{q} - \mathbf{\kappa}) \quad .$

Общие формулы (продолжение)

- 2. Шесть семейств диффузных стержней типа [110] $I_{cm}^{xy}(\mathbf{q}) = f^{2} \cdot \sin^{2}(q_{x} - q_{y})\Delta_{xy} \cdot [1 + \cos\frac{1}{2}(q_{x}a - q_{y}b + q_{z}c)] \cdot \cos^{2}(q_{y} - q_{z})\Delta_{x\bar{y}} \cdot \cos^{2}(q_{z} - q_{x})\Delta_{y\bar{z}}$ $\times \cos^{2}(q_{x} + q_{y})\Delta_{x\bar{y}} \cdot \cos^{2}(q_{y} + q_{z})\Delta_{y\bar{z}} \cos^{2}(q_{z} + q_{x})\Delta_{z\bar{x}} \cdot \delta(q_{z} - \kappa_{z})\delta(q_{x} - q_{y} - \kappa_{x})$
- 3. Три семейства диффузных плоскостей типа (100)

$$I_{n\pi}^{z}(\mathbf{q}) = f^{2} \cdot \sin^{2}(q_{x} - q_{y})\Delta_{xy} \cdot \sin^{2}(q_{x} + q_{y})\Delta_{xy} \cdot \cos^{2}(q_{y} + q_{z})\Delta_{y\overline{z}} \cos^{2}(q_{z} + q_{x})\Delta_{z\overline{x}}$$
$$\times \cos^{2}(q_{y} - q_{z})\Delta_{y\overline{z}} \cos^{2}(q_{z} - q_{x})\Delta_{z\overline{x}} \cdot \delta(q_{z} - \kappa_{z}) \quad .$$

4. Четыре семейства диффузных плоскостей типа (111)

$$\begin{split} I_{nn}^{xyz}(\mathbf{q}) &= f^2 \cdot \left[1 + \cos \frac{1}{2} \left(q_x a + q_y b + q_z c\right)\right] \cdot \cos^2 \left(q_x - q_y\right) \Delta_{x\bar{y}} \cdot \cos^2 \left(q_y - q_z\right) \Delta_{y\bar{z}} \cos^2 \left(q_z - q_x\right) \Delta_{zx} \\ &\times \left\{\sin^2 \left(q_x + q_y\right) \Delta_{x\bar{y}} \cdot \sin^2 \left(q_y + q_z\right) \Delta_{y\bar{z}} \cdot \cos^2 \left(q_z + q_x\right) \Delta_{z\bar{x}} \\ &+ \sin^2 \left(q_y + q_z\right) \Delta_{y\bar{z}} \cdot \sin^2 \left(q_z + q_x\right) \Delta_{z\bar{x}} \cdot \cos^2 \left(q_x + q_y\right) \Delta_{x\bar{y}} \\ &+ \sin^2 \left(q_z + q_x\right) \Delta_{z\bar{x}} \cdot \sin^2 \left(q_x + q_y\right) \Delta_{x\bar{y}} \cdot \cos^2 \left(q_y + q_z\right) \Delta_{y\bar{z}} \\ &+ \sin^2 \left(q_x + q_y\right) \Delta_{x\bar{y}} \cdot \sin^2 \left(q_y + q_z\right) \Delta_{y\bar{z}} \cdot \sin^2 \left(q_z + q_x\right) \Delta_{z\bar{x}} \\ &+ \sin^2 \left(q_x + q_y\right) \Delta_{x\bar{y}} \cdot \sin^2 \left(q_y + q_z\right) \Delta_{y\bar{z}} \cdot \sin^2 \left(q_z + q_x\right) \Delta_{z\bar{x}} \right\} \cdot \delta(q_x + q_y + q_z - \kappa_x) \quad , \end{split}$$

5. Сплошной диффузный фон (мы его не выписываем)

Расчетная монолауэграмма на ОЦК кристалле

(фотопленка за пучком и перпендикулярна ему, пучок направлен вдоль [001])

О сравнении расчетных и экспериментальных моно-Лауэграмм

При сравнении расчетных и экспериментальных моно-Лауэграмм следует иметь в виду несколько обстоятельств. Во-первых, для получения четких изображений требуется хорошая монохроматизация, хорошая коллимация падающего пучка, пучок должен быть как можно более узким (во всяком случае, в месте падения на образец), и для этого, например, Комес, Ламбер и Гинье применяют дважды изогнутый монохроматор из монокристалла топаза. Во-вторых, из-за значительно меньшей интенсивности диффузного рассеяния по сравнению с Брэгговскими рефлексами требуются очень большие времена экспозиции. В-третьих, в теории для выполнения расчетов колеблющиеся объекты предполагаются бесконечными, светящиеся диффузные плоскости и стержни получаются бесконечно тонкими, а в реальности корреляции внутри колеблющихся объектов конечны. Кроме того, обычное тепловое диффузное рассеяние (ТДР), которое сконцентрировано в окрестности Брэгговских рефлексов (шубы), часто накладывается на светящиеся диффузные стержни.

ВЛИЯНИЕ ВЗАИМОДЕЙСТВИЯ НА ДИФФУЗНОЕ РАССЕЯНИЕ

До сих пор мы рассматривали независимые колебания плоскостей. Однако между атомами всегда существует взаимодействие, которое приводит к эффективному притяжению или отталкиванию, которое включается в задачу через гамильтониан:

$$H = -J \sum_{nl,\delta} (\Delta_{nl} \sigma_{nl} \cdot \Delta_{nl+\delta} \sigma_{nl+\delta})$$

Задача решается и формально каждый множитель типа $\sin^2(q_x - q_y) \Delta_{xy}$ приобретает дополнительный множитель.

$$L_{xy} = \frac{1 - \text{th}^2 (\beta J \Delta_{xy}^2)}{1 + \text{th}^2 (\beta J \Delta_{xy}^2) - 2\cos(q_x a + q_y b) \cdot \text{th}(\beta J \Delta_{xy}^2)}$$

По общей схеме выводится система уравнений для шестикомпонентного параметра порядка

$$\begin{split} \eta_{xy} &= \mathrm{th} \Big[\beta |J| \Delta^2 (1 + l\eta_{xy})^2 (1 - \eta_{x\bar{y}})^2 (1 - \eta_{yz})^2 (1 - \eta_{y\bar{z}})^2 (1 - \eta_{zx})^2 (1 - \eta_{z\bar{x}})^2 \Big] \\ \eta_{x\bar{y}} &= \mathrm{th} \Big[\beta |J| \Delta^2 (1 - \eta_{xy})^2 (1 + l\eta_{x\bar{y}})^2 (1 - \eta_{yz})^2 (1 - \eta_{y\bar{z}})^2 (1 - \eta_{zx})^2 (1 - \eta_{z\bar{x}})^2 \Big] \\ \eta_{yz} &= \mathrm{th} \Big[\beta |J| \Delta^2 (1 - \eta_{xy})^2 (1 - \eta_{x\bar{y}})^2 (1 + l\eta_{yz})^2 (1 - \eta_{y\bar{z}})^2 (1 - \eta_{zx})^2 (1 - \eta_{z\bar{x}})^2 \Big] \\ \eta_{y\bar{z}} &= \mathrm{th} \Big[\beta |J| \Delta^2 (1 - \eta_{xy})^2 (1 - \eta_{x\bar{y}})^2 (1 - \eta_{yz})^2 (1 - \eta_{y\bar{z}})^2 (1 - \eta_{zx})^2 (1 - \eta_{z\bar{x}})^2 \Big] \\ \eta_{zx} &= \mathrm{th} \Big[\beta |J| \Delta^2 (1 - \eta_{xy})^2 (1 - \eta_{x\bar{y}})^2 (1 - \eta_{yz})^2 (1 - \eta_{y\bar{z}})^2 (1 - \eta_{z\bar{x}})^2 (1 - \eta_{z\bar{x}})^2 \Big] \\ \eta_{z\bar{x}} &= \mathrm{th} \Big[\beta |J| \Delta^2 (1 - \eta_{xy})^2 (1 - \eta_{x\bar{y}})^2 (1 - \eta_{yz})^2 (1 - \eta_{y\bar{z}})^2 (1 - \eta_{z\bar{x}})^2 (1 - \eta_{z\bar{x}})^2 \Big] \end{split}$$

Решение системы уравнений для компонентов параметра порядка

Затем численное физическое решение системы подставляется в Брэгги, диффузные стержни и плоскости и выражения для параметров решетки:

$$\begin{cases} a'_{x} = a \left(1 + \lambda \eta_{xy} + \lambda \eta_{x\overline{y}} \right) \left(1 - k \eta_{yz} - k \eta_{y\overline{z}} \right) \left(1 + \lambda \eta_{zx} + \lambda \eta_{z\overline{x}} \right) \\ a'_{y} = a \left(\lambda \eta_{x\overline{y}} - \lambda \eta_{zy} \right) \\ a'_{z} = a \left(\lambda \eta_{z\overline{x}} - \lambda \eta_{zx} \right) \\ b'_{x} = a \left(\lambda \eta_{x\overline{y}} - \lambda \eta_{zy} \right) \\ b'_{y} = a \left(1 + \lambda \eta_{xy} + \lambda \eta_{x\overline{y}} \right) \left(1 + \lambda \eta_{yz} + \lambda \eta_{y\overline{z}} \right) \left(1 - k \eta_{zx} - k \eta_{z\overline{x}} \right) \\ b'_{z} = a \left(\lambda \eta_{y\overline{z}} - \lambda \eta_{yz} \right) \\ c'_{x} = a \left(\lambda \eta_{z\overline{x}} - \lambda \eta_{zx} \right) \\ c'_{y} = a \left(1 - k \eta_{xy} - k \eta_{x\overline{y}} \right) \left(1 + \lambda \eta_{yz} + \lambda \eta_{y\overline{z}} \right) \left(1 + \lambda \eta_{z\overline{x}} + \lambda \eta_{z\overline{x}} \right) .$$

И общая картина происходящего, как на ладони !

Контракция одной плоскости (110)

Колебания и сдвиги двух плоскостей (110)

Переход ОЦК-ГПУ в прямом пространстве

конечное положение атомов

процесс перехода: упаковка плоскостей по схеме + - + - + -

ОЦК-ГПУ температурная эволюция рассеяния

При высокой температуре существует шесть семейств диффузных стержней по направлениям типа [110], три семейства плоскостей типа (100) и четыре семейства плоскостей типа (111) с однородной интенсивностью внутри каждого образа. При понижении температуры до фазового перехода на диффузных стержнях возникают и плавно растут пики (из-за температурной зависимости функции L), причем одинаково в каждом семействе. Аналогично модулируются и плоскости, но каждая из плоскостей модулируется не одной, а двумя или тремя функциями L.

В точке фазового перехода в одном из семейств стержней (соответствующих ведущему компоненту параметра порядка) пики скачком возрастают, а в остальных семействах стержней скачком убывают. Кроме того, интенсивности всех плоскостей скачком падают.

ОЦК-ГПУ температурная эволюция рассеяния 2

При дальнейшем понижении температуры пики одного семейства стержней растут и превращаются Брэгговские пики с интенсивностью 3/4 при *T*=0, а интенсивность всех остальных диффузных образов уменьшается и стремится к нулю при *T*=0.

ОЦК-ГПУ температурная эволюция Брэгговских пиков

В точке фазового перехода половина Брэгговских пиков скачком падает. Их интенсивность при дальнейшем понижении температуры продолжает уменьшаться и стремится к 1/4 при *T*=0. Интенсивность другой половины Брэгговских пиков меняется очень слабо, стремясь к единице при *T*=0.

(Интенсивность пиков измеряется в единицах исходных ОЦК пиков в пренебрежении зависимости форм-фактора от волнового вектора).

При переходе ОЦК-ГПУ число Брэггов удваивается!

Истинных перехода два !

Самый удобный для понимания выбор элем. ячеек в ОЦК и ГПУ. Фактически сначала переход ОЦК-орторомб, а затем постепенно при Т→0 приходим к переходу орторомб-ГПУ.

элемент	c/a
Li	1.357
Na	1.627
Be	1.567
Hf	1.582
Mg	1.624
Os	1.579
Re	1.615
Ru	1.584
Sc	1.594
Sr	1.636
Тс	1.604
Те	1.33
Tl	1.599
Y	1.571
Zr	1.593
Gd	1.588
Но	1.57
Dy	1.573
La	1.619
Lu	1.585
Nd	1.614
Tb	1.581
Tm	1.57
Ti	1.59
Er	1.57

Сравнение с экспериментом

Во-первых, c/a всегда меньше, чем идеальное 1.633, а в теории c = const., а плоскости стремятся к плотной упаковке только при T=0. Но кроме этого грубого факта еще и гексагональность нарушается, и все это можно засечь на рентгенограмме.

Переходы из ОЦК

	металлы									
T	Li Na	Ca Sr	Fe	Yb	Gd Tb	Pr Nd	Ce	La Am	Pu (pure)	
	bcc	bcc	bcc	bcc	bcc	bcc	bcc	bcc	bcc	
	hcp	fcc	fcc	fcc	hcp	dhcc	fcc	fcc	fcc	
V			bcc				dhcp	dhcp	dhcp	
							fcc			

Переход ОЦК-ГЦК

исходное положение атомов

процесс перехода

конечное положение атомов

Переход ОЦК-ГЦК

В процедуре расчетов ничего не меняется, кроме знака взаимодействия (J>0).

Контракция одной плоскости (110) сохраняется

Колебания и сдвиги двух плоскостей (110) сохраняются

Но только упаковываются плоскости теперь по «ферромагнитной» (J>0) схеме: + + + + + +

Сдвиги атомов в ячейке

Самый удобный для понимания выбор элем. ячеек в ОЦК и ГЦК. Фактически сначала переход ОЦК-моноклин, а затем постепенно при T—>0 приходим к переходу моноклин- ГЦК.

Переход ОЦК-ГЦК в обратном пространстве

При высокой температуре существует шесть семейств диффузных стержней по направлениям типа [110], три семейства плоскостей типа (100) и четыре семейства плоскостей типа (111) с однородной интенсивностью внутри каждого образа. При понижении температуры до фазового перехода на диффузных стержнях возникают и плавно растут пики (из-за температурной зависимости функции *L*), причем одинаково в каждом семействе. Аналогично модулируются и плоскости, но каждая из плоскостей модулируется не одной, а двумя или тремя функциями *L*.

В точке фазового перехода в одном из семейств стержней (соответствующих ведущему компоненту параметра порядка) пики скачком возрастают, а в остальных семействах стержней скачком убывают. Кроме того, интенсивности всех плоскостей скачком падают. При дальнейшем понижении температуры пики одного семейства стержней растут и превращаются Брэгговские пики с интенсивностью 3/4 при T=0, а интенсивность всех остальных диффузных образов уменьшается и стремится к нулю при T=0. В точке фазового перехода половина Брэгговских пиков скачком падает. Их интенсивность при дальнейшем понижении температуры продолжает уменьшаться и стремится к 1/4 при T=0. Интенсивность другой половины Брэгговских пиков меняется очень слабо, стремясь к единице при T=0. Но только попадают диффузные пики (3/4) точно в те Брэгги, где $\frac{1}{4}$.

ОЦК-ГЦК одна из плоскостей обратной решетки

Литература

- 1. *Comès R., Lambert M. and Guinier A.* «Desordre lineaire dans les cristaux (cas du silicium, du quartz et de perovskites ferroelectriques)». Acta Cryst. 1970. V. A26. P. 244—254.
- 2. F.A. Kassan-Ogly V.E. Naish and I.V. Sagaradze, «Diffuse Scattering and Structural Phase Transitions», Phase Transitions, **49**, 89—141 (1994).
- Ф.А. Кассан-Оглы, В.Е. Найш и И.В. Сагарадзе, «Диффузное рассеяние в металлах с ОЦК решеткой и кристаллогеометрия мартенситных фазовых переходов ОЦК—ГЦК и ОЦК—ГПУ». ФММ. 65 (3), 481—492 (1988).
- 4. Ф.А. Кассан-Оглы, В.Е. Найш и И.В. Сагарадзе, «Теория температурной эволюции диффузного рассеяния и фазового перехода ОЦК—ГПУ», ФММ. 68 (2), 253—263 (1988).
- 5. Л.Д. Ландау и Е.М. Лифшиц, Теоретическая физика, т.5. Статистическая физика. Изд. «Наука». Москва (1964).

Благодарю за внимание