

NEUTRONS FOR SCIENCE

Institut Max von Laue - Paul Langevin**Grenoble**

NEUTRONS FOR SCIENCE

Александр ИВАНОВ

Institut Max von Laue - Paul Langevin**Grenoble**

Three-Axis Spectrometers Group

IN1: hot-neutron spectrometer Исследования конденсированных сред с помощью**«**горячих**»**нейтронов

"Hot Source": graphite at 2200 ooC

(heated by radiation from working fuel element)

Three monochromators (all in *reflection*): **Cu200**, **Cu220**, **Cu331**Slit collimators: 20', 30', 40', 60' *Boron-coated blades*

Monochromatic flux is reduced for the reflecting crystal planes with high Miller indices:

> **^d200= 1.807 Å ^d220= 1.278 Å^d331= 0.829 Å**

$$
\Delta E_i / E_i = 2 \cdot \cot(\theta_M) \cdot \Delta \theta_M
$$

$$
\cot(\theta_M) \approx 1/\sin(\theta_M) \sim d_{HKL} \cdot \sqrt{E_i}
$$

Neutron flux incident on the sample is given by $\varDelta E_{i}$ modulated by the reactor **spectrum ("thermalised to the source")**

$$
\Delta \theta_M = \sqrt{\frac{(\alpha_1 \alpha_2)^2 + (\alpha_1 \eta)^2 + (\alpha_2 \eta)^2}{\alpha_1^2 + \alpha_2^2 + 4\eta^2}}
$$

Angular dispersion scales approximately linearly with the $\boldsymbol{\alpha}_1$ **eam collimations,** $e.g.$ **for** $\boldsymbol{\alpha}_1$ $=$ $\boldsymbol{\alpha}_2$ $=$ $\boldsymbol{\alpha}$ $\Delta\theta_{\rm M} = \alpha/\sqrt{2}$

TAS secondary spectrometer

IN1-TAS

classical 3-axis scheme variable incident andscattered neutron energy

collective excitationsin single crystals

atomic dynamics inliquids and glasses

IN1-BeF

fixed scattered energy

molecular dynamicsH-containing compoundsPhonon DOS

polycrystalline samples

Examples. TAS results.

Spin dynamics in magnetite Fe3O4P.Mitchell et al

Phonon dispersion in ZnO

Vibration spectrum of CaC6M.Dean et al

Brillouin scattering in liquids investigated with neutron TASCollective excitations: long wavelength phonons

neutron-accessible typical **q** (0.1 - 1 A⁻¹) and *hω* (1 - 10 meV) ranges are some and the manufacture of manufacture higher the higher than the "international" light assettation to shair the manufacture 2 orders of magnitude higher than in the "classical" light-scattering technique

Low-Q experiments (neutron momentum transfer)

Need in very small scattering angles (down to 1 degree)

Restricted accessible (Q, ω) range

Use of "hot" neutrons makes accessible energy transfer range typical for thermal vibrations in the limit of low neutron momentum transfers.

For periodic structures (single crystals) neutron energy can be of the order of typical excitation energies $E_i \sim h \omega_{max}$ **: one can choose BZ** $(Q = G + q \text{ with } G \neq 0)$

For liquids *G = 0* **and** *Q = q* **is unavoidable**

Brillouin scattering = life at small scattering angles: ~ 1 - 10 degrees

> $V_n > V_{sound}$ **is necessarily required**

Vn ~ 1.5 Vsound **is a reasonable minimum**

 \textbf{a} s a result E_i (or E_f) \implies $h\omega_{max}$ (at BZ/2)

Small scattering angles:

Need in *fine beam collimation***(**α**) before and after the sample**

This demand is favorable as well for the energy resolution and maximization of the accessible energy transfer range

But severe decrease in luminosity: count rate $\sim \alpha^4$

A typical experiment ~10-12 days(5-7 Q-values, 1-2 temperature points)

Instrument background is a key issue.

No long tails in resolution:

E |meV]

$$
I_{BG} = I_{Cd} + T_S \cdot (I_{empty} - I_{Cd})
$$

"Own" instrument background is low -

1-5 counts/minute

for an inelastic setting and at scattering angles > ~3 deg

Below these angles the BG is dependent practically on the scattering angle only.

Other particularities of the small-angle experiment

- ⇒ *Resolution variation* **along the scan is important, contrary to the case of "classical" large-Q phonons**
- ⇒ *Multiple scattering* **contribution is outlined it stems from the (elastic) form-factor at large Q**

Components indispensable for reduction of Background

Boron coated slit collimators

Components indispensable for reduction of Background

Vacuum beam path (1m) around the sample

B4C slitsinside the box

A new vacuum box with *single-crystal Silicon* **entrance and exit windows has been designed**

further *decrease in BG* **and** *lower scattering angles***are expected to be accessible**

New double-focussing Cu200 analyser for IN1-TAS

The gain factor of ~2 for the Brillouin scattering experiments, when operated flat horizontally, due to: *crystal quality, reflectivity and mosaicity*

Supplementary gain due to horizontal focussing amounts to a factor of 2.5 -3.5 (total factor of 5 - 7)

CNTS 18442-43/mn=1000000

\$ ų.

IN1-TAS June 2007 Cu220 mono/60' NEW analyser Cu200 double-focusing, optimised on both curvaturesVanadium sample φ11 mm x 40 mm Detector slit 2 cm (h) x 9 cm (v)

Collective dynamics in liquid Ga

Collective vibrations:

$\omega_{\rm c}$ (Q) = ${\rm c}_{\rm o}$ ·Q (${\rm c}_{\rm o}$ > ${\rm c}_{\rm sound}$) $\Gamma_{\rm c}(\omega,{\rm Q})$ ~ const· $\omega{\cdot}{\rm Q}$

Collective dynamics in binary alloy Li-Bi

Two modes are observedsimultaneously

acoustic vs **optical**

$$
Z_{1,2}(Q) = \int_{-\infty}^{+\infty} I_{1,2}(Q,\omega) d\omega
$$

$$
\sqrt{Z_{1,2}(Q)\omega_p(Q)}/\{[2n(\omega_p(Q))+1]Q^2\}
$$

Molten alloys Fe-Ni and Fe-Ni-S (T ~ 1475oC)

Only small differencesin the samples $\mathsf{Fe}_{0.85}\mathsf{Ni}_{0.15}$ and $\text{Fe}_{0.85}\text{Ni}_{0.05}\text{S}_{0.10}$

nano-clustering due to Sulfuris not observed

IN1-TAS is a powerful instrument for studies of high-energy collective dynamics in condensed matter

For studies of atomic dynamics in liquids and glasses it offers a unique combination of

> **High Energy Resolution Low instrument BackgroundAccessible scattering angles down to 1o**

in order to access typical dynamic range with scattering wave vectors Q above ~0.3 A-1 and characteristic times below ~10-12s

Molecular vibrations in complex compoundsstudied with Beryllium filter-analyserIN1-BeF

Almost infinite list of materials which can be investigated because polycrystals are sufficient to obtain integral characteristics of vibration spectra such as Phonon DOS

however a few experiments with single crystal or oriented (textured) samples brought in an important insight to their lattice dynamics

Recent examples include: metal hydrides, hydrogen absorbers, compounds with hydrogen bonds, catalysts (Pt-based, Raney Co), molecular zieves (zeolites), nanocrystalline oxides, biological matter, minerals (kaolinite), water in hydrates, amorphous materials etc.

10 publications in the year 2009

is a combination of

variable ∆*Ei* **andconstant** ∆*Ef*

*Beryllium-Filter analyser (fixed energy window for scattered neutrons)***Constant scattered energy E^f = 3.5 meV Constant resolution** [∆]**E^f = 3 meV**

Incident energy Ei varies "step-by-step"(Ei = 14 - 1000 meV)

Monochromatic line resolution∆**Ei = 1 meV -> (20-40 meV) as a function of incident energy, selected monochromator plane and beam collimation**

Flexible variation of the energy resolution permits gains in intensity for small or poorly scattering samples

the monochromator contributes to the resolution at high energy transfers

while

the analyser energy window is important below ~150-200 meV

BackGround is not a serious problem for hydrogenated samples:

$$
signal = inelastic \sim \sigma_{sc} / M
$$

BG = elastic \sim \sigma_{sc}

as many H-atoms as in 50 mm3 of water

Inelastic spectra in complex compoundsserve to refine or resolve structure

High luminosity: *small samples are possible*

High luminosity: *small samples are possible*

An example - mono-hydrides of transition metals prepared at extreme conditions and metastable at ambient Temperature and Pressure (V.E.Antonov et al, ISSP Chernogolovka)

Typical weight of the samples - a few hundred milligrams they contain a *few milligrams* of Hydrogen

(a)

Carbon (nano-)phases

from the neutron scattering point of viewmuch more material is needed than for hydrides:

the integral characteristics of scattering power isScattering cross-section

atomic mass

by a factor of 100

 Carbon is "worse" than Hydrogenin an inelastic neutron scattering experiment

taking into account larger energy spread of vibration spectrum in C-phases, a few-hundred-milligram samples are required

The instrument sensitivity in a standard experimentcan be estimated as $\sim\hspace{-0.1cm}10^{20}$ Hydrogen atoms or $\sim\hspace{-0.1cm}150$ µg in the sample

> As "many" as in ~2cm3 of hydrogen gas orin $\sim\!1$.5mm 3 of water

For Carbon samples (fullerenes or nano-tubes) the minimal required quantity will be at some 1022 C-atoms or 200mg of sample

This is a very good performancenot achieved elsewhere

why IN1-BeF is such an exceptional instrument and whether further improvements are possible? **Two main techniques are applied in practice for neutron energy determination:**

Bragg diffraction **in use on TAS (three-axes) spectrometers and neutron** *time-of-flight* **on TOF spectrometers**

TAS: continuous beam and a small solid angle (0.1-10·10-3 Steradian)

TOF: chopped beam but large solid angle (0.1-0.5 Steradian)

*Actual IN1-BeF***: continuous beam (TAS-like)and an intermediate solid angle (0.06 Sterad)**

while the outcome (Phonon DOS) is "TOF-like"

This combination gives a key for understanding high luminosity of IN1-BeFilter and a hint to further improvements of the instrument performance

Such improvements are requested because samples of *novel materials* appear first in small quantities, moreover in certain applications the *energy resolution* may be not sufficient and/or the sample-dependent *background* will reduce the precision of measured spectral intensities

In order to improve the IN1-BeF instrumentcapabilities for the Phonon DOS studies we have started construction of thenew spectrometer called

IN1-LAGRANGE

(LArge GRaphite ANalyzer for Genuine Excitations)

with a different principle ofanalyzing scattered neutron energy

Advantages of theLAGRANGE

combining the best properties of TAS and TOF techniques:**continuous beam and very large solid angle**

using space focussing:a small single counter increase in solid angle (up to 2.5 Sterad) but without multiplying counting volume

> **typical instrument** volume \sim 1 m³

low and sample– independent BG:protection on the samplecounter path

Currently accepteddesign of the IN1-LAGRANGE spectrometer

The budget sources are defined and the execution phase has commenced

We aim to have the instrument commissionedin the year 2011

The the intensity gain by a factor of 5 (a conservative estimate) can be "paid" in order to leave behind the highest presently known level of the energy resolutionin neutron spectroscopy of molecular excitations and to attain the level of $~\sim\!1\%$.

The new spectrometer LAGRANGEfor the hot-source IN1 will bea versatile, highly sensitive and high-resolution instrument

Maintaining the flexibility in optimisation on resolution/intensitythe LAGRANGE spectrometer will become a unique toolfor studies in the energy range of excitationsof molecules containing light atoms.

By combination of its parameters the new spectrometer will be superiorto the existing instruments of similar destination elsewhere

The new instrument will permit:

- **• investigation of much smaller samples, inherent in novel materials studies,**
- **• recording well-resolved vibration spectra,**
- **• more detailed probing of external parameters like T, P, x, H**
- **• access to time dependent processes**
- **•** *etc.*

Spectrometer of IN1

a factor of 5

planes:

intensity.

- as

points

The running (vertical and horizontal) which see the sample position up to in the used energy range

Perspectives of high-energy spectrometry on steady-state sources

Due to upgrades both primary and secondary spectrometersthe total count rate in detectors of IN1 instrumentswill be up to 30 times higher

for the LAGRANGE set-up sensitivity will attain levels of ~10 µ**g of Hydrogen(10 mg of Carbon) in the samples**

Approaching spallation sources (ISIS, SNS, ESS)by energy resolution (down to $\sim 1\%$)

their spectral characteristics are less favourable in the domain of "hot neurons":keep being competitive in the future