

Трехмерные фотонные и фононные кристаллы на основе синтетического опала для управления световыми потоками

Валерий Голубев

Лаборатория физики аморфных полупроводников ФТИ им. А.Ф.Иоффе Санкт-Петербург, Россия

Программы и кооперация

Программы и проекты (за 7 лет) FP6 EC Program (2) **INTAS (2) Russia-Italy (bilateral) (1)** $P\Phi\Phi H - DFG(1)$ РФФИ (4) **PAH (4)** ФАНИ и Минпром (4) НОЦ ФАНИ (1)

Опубликовано более 60 статей

План доклада

- Что представляет собой фотонный кристалл?
- Синтетический опал совершенный модельный трехмерный фотонно – кристаллический материал
- Нанокомпозиты опал-наполнитель (GaN, GaP, Pt, Cu, оксиды Fe, наноалмазы)
- Излучающие фотонно кристаллические материалы опал - Er (фотолюминесценция)

опал - фосфоры (электролюминесценция)

- Сверхбыстрое переключение фотонной запрещенной зоны в нанокомпозитах опал-полупроводник (опал Agl, опал Si, опал VO₂)
- Гиперзвуковая модуляция света и фильтрация гиперзвуковых волн в фотонно-фононных кристаллах на основе опала
- Заключение

Фотонные кристаллы - структуры, в которых диэлектрическая проницаемость модулируется с периодом, сравнимым с длиной волны света.

Современная история фотонных кристаллов началась в 1987г., когда была четко сформулирована концепция фотонной запрещенной зоны (photonic band gap) и показана глубокая аналогия между свойствами фотонных кристаллов и электронных кристаллических материалов, обладающих зонной структурой. По аналогии с электронной зонной структурой в атомных кристаллических решетках эта периодичность обусловливает существование фотонной запрещенной зоны (ФЗЗ) энергетической области, в пределах которой распространение света внутри кристалла подавлено в определенном (псевдо-ФЗЗ, стоп-зона, ФЗЗ) или во всех (полная ФЗЗ) направлениях.

Именно наличие ФЗЗ позволяет осуществить контроль спонтанной эмиссии, приводит к эффектам локализации света и открывает путь для применений фотонных кристаллов в системах оптической связи и передачи информации, лазерной техники.

Фотонные кристаллы в природе

NATURAL PHOTONIC BAND GAPS occur in some butterfly wings (left) and in opais (right). In both cases, the band gap is incomplete—it is not effective in every direction—but k produces iridescent colors. A micrograph of a

Practured indescent green butterfly scale (center) shows the submicronsize (ace-centered cubic structure inside. Opais consist of submicron-size silica spheres attanged in a face-centered cubic (close-packed) structure.

Одномерные, двухмерные и трехмерные фотонные кристаллы

Simple example of one-, two, and three-dimensional photonic crystals. The different colors represent materials with different dielectric constants. The defining feature of a photonic crystal is the periodicity of dielectric material along one or more axes.

Одновременное выполнение условий для двух механизмов резонансного рассеяния – «макрорезонанса» (брэгговская дифракция на упорядоченных рассеивателях) и «микрорезонанса» (рассеяние на элементарной ячейке)

Трансляционная симметрия и симметрия примитивной ячейки: взаимосвязь между двумя различными резонансными механизмами рассеяния

PBG formation can be regarded as the synergetic interplay between two distinct resonance scattering mechanisms. The first is the "macroscopic" Bragg resonance from a periodic array of scatterers. This leads to electromagnetic stop gaps when the wave propagates in the direction of periodic modulation when an integer number, m=1,2,3..., of half wavelengths coincides with the lattice spacing, L, of the dielectric microstructure. The second is a "microscopic" scattering resonance from a single unit cell of the material. In the illustration, this (maximum backscattering) occurs when precisely one quarter of the wavelength coincides with the diameter, 2a, of a single dielectric well of refractive index n.

loffe

Physical-Technical

Institute

PBG formation is enhanced by choosing the materials parameters a, L, and n such that both the macroscopic and microscopic resonances occur at the same frequency.

<u>Полная</u> фотонная запрещенная зона

W

Х

(термин - Yablonovitch, 1993)

Решетка типа поленницы,

Решетка алмаза, ва /вь=13

Photonic Band Gap

Г

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

L

Frequency wa/2πc

БОЛЬШОЙ ДИЭЛЕКТР. КОНТРАСТ (ɛа/ɛь) + ТОПОЛОГИЯ !!

Трехмерные фотонные кристаллы с полной фотонной запрещенной зоной.

Важнейшее обстоятельство - плотность электромагнитных мод внутри фотонного кристалла равна нулю!

Плотность фотонных состояний –

важнейшая характеристика фотонных кристаллов!

 $Wr \propto \rho(\omega)$

Wr-вероятность излуч. рекомбинации ρ(ω)-плотность фотонных мод

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Photonic Crystals: Molding the Flow of Light, second edition (Princeton Univ. Press, 2008)

Подавление и увеличение интенсивности спонтанной эмиссии

Ioffe Physical-Technical Institute

Технические применения

- Световоды
- Переключатели
- Сенсоры
- Низкопороговые лазеры
- Оптические интегральные схемы

Синтетический опал – модельный трехмерный фотонно – кристаллический материал

ФТИ 1995 год !!! В.Н.Богомолов, А.А.Каплянский и др.

Сферы диоксида кремния диаметром 100 - 1000 нм

Расположение а-SiO2 сфер в ГЦК решетке опала (а), ГЦК примитивная ячейка (b), СЭМ изображение синтетического опала (c), опалы с различным диаметром а-SiOx сфер (d)

 $\lambda_{111} = 2d_{(111)}\sqrt{\langle \varepsilon \rangle - \sin^2 \theta}$

Кристаллическая структура синтетического опала

Crystalline structure of artificial opal

SEM images of four facets in a real opal to be compared with a model crystal (center) a) (111), b) (111) c) (110) d) (100) [*C. Lopez, Adv. Mater. 15, 1679 (2003)*]

Спектры пропускания и отражения

Брэгговский резонанс

$$\lambda_{111} = 2d_{(111)}\sqrt{\langle \varepsilon \rangle - \sin^2 \Theta}$$

Изготовление объемных опалов

(самоорганизующиеся коллоидные системы)

Метод седиментации или центрифугирования искусственно выращенных монодисперсных сферических глобул диоксида кремния, полученных гидролизом тетраэтоксисилана в присутствии гидроксида аммония (*переход беспорядок-порядок*). После седиментации опалы высушивают и упрочняют термическим отжигом.

Изготовление опаловых пленок

Жидкофазная коллоидная эпитаксия на вертикальной подложке: упорядочение (самосборка) частиц (переход беспорядок-порядок) в мениске жидкости под действием сил поверхностного натяжения Вставки 1,2 – области действия сил поверхностного натяжения: упорядочение коллоидных частиц на поверхности жидкости вблизи мениска, 3-область действия капиллярных сил, 4 – полная утрата сольватной оболочки шаров, усадка и сушка коллоидного кристалла.

Пленки синтетического опала

Пленки синтетического опала

Регулярная упаковка сфер (а)

<u>и однородная иридесценция опаловых пленок (b)</u>

Однодоменные пленки!

<u>Иридесценция объемного опала</u> Полидоменные пленки

Подрешетка взаимосвязанных пор

500 nm

<u>Положение ФЗЗ может быть изменено</u> в УФ-ИК диапазоне изменением размера сфер и контролируемым заполнением подрешетки пор.

<u>Заполнением пор получаем уникальный объект с функциональностью</u> <u>как фотонного кристалла, так и наполнителя!!!</u>

Нанокомпозиты на основе опала

SEM image of inverted GaN opal

Более 60 статей

Light-emitting materials GaN_xP_{1-x}, GaN:Er, ZnS:Mn, Zn₂SiO₄:Mn, Er₂O₃, Er₂SiO₅, Er₂Si₂O₇

Materials with phase transitions (tunable 3D photonic crystals) VO₂, Agl

Si, GaN, GaP, VO₂

Metals Au, Ag, Pt, Cu, W, Sn, Pb, In, Ga, Bi

> Magnetic materials Co, Ni, Fe oxides

METHODS Chemical bath deposition, chemical vapour deposition, high pressure Characterization XRD, Raman, optical measurements (T, R, PL), SEM, AFM TEM, EDX, STM

Основные методы заполнения

- Методы заполнения из расплава
- Методы заполнения из растворов
- Газофазные методы
- Синтез целевых веществ в порах опала с использованием твердых и жидких прекурсоров

Использование физико-химических свойств веществ (низкая температура плавления, высокое давление паров, контактные свойства расплава и поверхности и др.)

Осуществление или предотвращение (буферные слои) протекания физико-химических процессов на межфазной границе вещества-наполнителя и материала матрицы опала

Выбор метода синтеза нанокомпозитов

Термостойкость пленок опала

We apply special treatment to increase thermal stability of the thin-film opal matrices. No cracks are observed in the treated samples after heating up to temperature of Si infiltration (500-600 °C). Very small changes were found in optical properties of the treated samples after heating.

Untreated samples

After heating at 600 °C

Before annealing

Treated samples

Получение GaN, GaN(Er), GaP и GaN_xP_{1-x} в порах опала

Экспериментальная методика

Рентгеновская дифракция нанокомпозитов опал-GaN и опал-GaP

ПЭМ нанокомпозитов опал-GaN (микрофотографии и микродифракционные картины) (Полное заполнение пор)

Степень заполнения Распределение наполнителя в поре Структурное совершенство наполнителя (точечные электронограммы)

Nanotechnology (2000); ΦΤΠ (2001, 2003, 2005); Sem.Sci.Tech. (2001); Phys.Stat.Sol.(b) (2002); Phys.Stat.Sol.(a) (2003); Phys.Rev.B (2005)

Композиты опал-GaN, опал-GaP и инвертированные структуры

Инвертированные структуры на основе GaN.

Приближение планарной
слоисто-периодической среды

$$\mathcal{E}_{s}(z) = \mathcal{E}_{a}f_{s}(z) + \mathcal{E}_{b}(1 - f_{s}(z))$$

Эффективная функция заполнения $f_s(z) = u(z) + u(z - L)$ *L-период* $u = u(z, a_{00}, \chi, \eta)$

Коэффициент спекания $\chi = \Delta a_{00} / D_{\perp} = \Delta L / L$

Коэффициент анизотропного сжатия

$$\eta$$
 = $D_{\prime\prime}$ / D_{\perp}

Композиты опал-GaP.

Пространственные профили f_s(z) для трех значений коэффициентов спекания *χ*.

$$d_{111} = a_{00}\eta \sqrt{2/3}$$

Phys.Rev.B (2005)

Композиты опал-GaN.

 а) Спектры брэгговского отражения для различных углов падения s-поляризованного света.

b) Угловая зависимость положения максимумов (заполненные кружки) брэгговских рефлексов, спектральные положения минимумов в дублетах _____

Возможное расположение соседних элементов структуры в опалах.

ЛатеральноеТермодинамически управляемый
синтез в порах опала

 $Fe(NO_3)_3 \cdot 9H_2O$

428 Κ (α-Fe₂O₃)

10 – 30 циклов

На поверхности нет материаланаполнителя!

Maгнетит синтезирован в порах опала восстановлением гематита в водороде в термодинамически равновесных условиях (T=630 K, P=0.2 bar). J. Phys. Chem. (2008)

Рентгеновская дифракция пленок опал-гематит и опал-магнетит

Средний размер нанокристаллитов Fe₃O₄ и α-Fe₂O₃ в порах порядка 20 нм.

СЭМ изображения пленок опал-гематит и опал-магнетит

Спектры пропускания нанокомпозитов опалгематит при различных степенях заполнения

loffe

Physical-Technical

Institute

Диффузное рассеяние, а не поглощение гематита обусловливает уменьшение прозрачности композита опал-гематит вне спектральной области брэгговского пика

Многоволновая брэгговская дифракция

в пленках опал-гематит

Дублетная структура спектров при наклонном падении света связана с многоволновой дифракцией на семействе плоскостей {111} непараллельных поверхности образца Угловая зависимость положения брэгговского пика отражения в диапазоне углов 0⁰ – 40⁰

Из подгонки определяется межплоскостное расстояние (d₁₁₁) в фотонном кристалле опал-гематит

Анализ многоволновой брэгговской дифракции

Phys. Rev B (2005), ΦTT (2005), J.Phys.Chem. (2008)

Нанокомпозит опал-наноалмаз

Заполнение пленки опала суспензией УДА детонационного синтеза Спектры отражения и пропускания незаполненной пленки опала и плнки, заполненной УДА

Незаполненная пленка опала

Нанокомпозит опал- Pt

J. Non-Cryst. Sol. (2000) Appl. Phys. Lett. (2000) Sem. Sci. Technol. (2001)

 $H_2PtCl_6 \cdot 6H_2O + 2H_2 + \leftrightarrow Pt + 6HCl + 6H_2$
Нанокомпозиты опал - Си

Спектры отражения от пленки опала для трех различных степеней заполнения пор медью: малой (L), средней (М) и большой (Н)

Спектры отражения при различных углах падения света

Спектр отражения (1) и поглощения (2) композита опал-Си, рассчитанный методом FDTD, и рассчитанный спектр отражения медной пленки толщиной 50 нм

Редкоземельные эмиттеры

 Пропитка пор опала 0.2М водным растворомtEr(NO₃)₃
4Er(NO₃)₃ → 2Er₂O₃ +12NO₂+3O₂

ФТП (2002)

Электронно-микроскопическое изображение поры в нанокомпозите опал-Er (<u>осаждение нанослоев</u>)

Светоизлучающие

нанокомпозиты опал-Ег

Фотолюминесценция опал - Er

Светоизлучающие нанокомпозиты опал-Ег

Электронно-микроскопическое изображение высокого разрешения границы a-SiO₂ сферы и тонкого аморфного слоя, содержащего Er (*a*) и границы a-SiO₂ сферы и поры, полностью заполненной поликристаллическим Er₂O₃ (*b*).

Линия фотолюминесценции,

соответствующая излучательному переходу ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3+} в композите опал-эрбий (1) и в кристаллической пленке $Er_{2}O_{3}$ (2).

ФТП (2002)

Нанокомпозиты опал-фосфор (ZnS:Mn, ZnxCd_{1-x}S:Mn, ZnxCd_{1-x}S:Ag, Zn₂SiO₄:Mn – сульфаты и силикаты Zn с Mn)

quartz tube

opal with precursor

Изготовление композитов

ZnS(c) ZnS(h) Intensity (a.u.) Opal-GaN-ZnS:Mn GaN(h) Zn₂SiO 20 30 40 50 60 80 70 2θ (deg.)

Appl. Phys. Lett (2005); Phot. Nanostr.-Fund. Appl. (2007)

P=1000 Torr

bare opal

Infiltration of an opal with GaN

Infiltration of an opal with ZnS:Mn

Рентгеновская дифракция

Электролюминесцентные фотонные кристаллы на основе нанокомпозитов опал-фосфоры (Анизотропная электролюминесценция)

 $\hbar \omega_1$ 0.1 O 8.0 S 0.0 Norm 0.4 S 0.2 $\hbar \omega_{2}$ 50° **Colors for** opal-GaN-ZnS:Mn $\hbar \omega_3$ composite **ITO** laver intensity (a.u.) 10⁴-10⁵ В/см (a) Filled opal matrix (b)● 0.1-2 КГц BaTiO₃ in organic compound Aq contact 님 SiO. (a) (b)450 500 550 Zn₂SiO₄:Mn GaN ZnS:Mn Wavelength (nm)

A schematic electroluminescent structure. The schemes of different active layers are shown: (a) - opal- Zn_2SiO_4 :Mn composite, (b) - opal-GaN-ZnS:Mn composite.

The EL spectra (a) and the spectra of reflection (b) of the composite opal-GaN-ZnS:Mn registered at various angles relative to the normal to the (111) surface of the composite.

600

40°30° 20° 10°

10°

20

50

650

(b)

(a)

700

Appl. Phys. Lett (2005); Phot. Nanostr.-Fund. Appl. (2007)

Опал (стоп-зона, ФЗЗ)

Инвертированный опал

Band structure of SiO₂opal (2.1).

DOS of silica opal (2.1).

<u>Полная</u> фотонная запрещенная зона

(возникает при диэлектр. контрасте больше 8.4)

Относительная ширина полной фот. запр. зоны, %

Заполнение объемных и пленочных опалов кремнием

CVD infiltration of bulk opals with amorphous silicon

CVD infiltration of opal films with amorphous silicon

Нанокомпозиты опал-Si

Structural characterization of opal-silicon composites

Raman spectra

TEM image of annealed opal-Si composite

1 - as-prepared opal-Si, 2 - opal-Si, annealed at 800 °C for 30 min, 2 - opal-Si, annealed at 800 °C for 2 h. The phonon frequency corresponding to c-Si is marked

550

600

ПЖТФ (1998); Appl. Phys.Lett. (2000, 2005); J.Appl.Phys. (2001); ФТП (2001); J.Non.-Cryst. Sol. (2000, 2002, 2004); Sem.Sci.Tech. (2001); Phys.E (2003); Phys.Rev.Lett. (2003); J.Lumin. (2004)

Заполненные опаловых пленок

кремнием

We developed the technique of infiltration of opal films with silicon. Photonic properties of the composites depend on the fill factor of pores.

Transmission spectra of a thin-film opal (540 nm beads) filled with silicon (various fill factors)

Photos of an opal film filled with Si at various angles of observation

Инвертированные кремниевые опаловые пленки

Опал-Si фотонные кристаллы:

- Полная фотонная запрещенная зона
- Слабое поглощение в ближнем ИК диапазоне
- Малые времена жизни носителей заряда
- Интеграция с кремниевой технологией
- Могут быть легированы излучающими редкоземельными металлами

Как управлять фотонной запрещенной зоной?

 $\lambda = 2d\sqrt{<\varepsilon}>$

<u>Изменять <ε></u>

Температура Генерация свободных носителей

Структурный фазовый переход первого рода полупроводник-суперионный проводник и управление оптическими свойствами нанокомпозитов опал-AgI

Shift of the band edge and the PBG

Conductivity hysteresis loop of the opal-Agl composite

Phys. Stat. Sol. (a) (2006)

ТРЕБОВАНИЯ К НАПОЛНИТЕЛЮ

<u>ФИЗИЧЕСКИЕ</u>

- высокий диэлектрический контраст
 - $g=max(\varepsilon_a/\varepsilon_b, \varepsilon_b/\varepsilon_a)$
- возможность сверхбыстрого управления свойствами

<u>ТЕХНОЛОГИЧЕСКИЕ</u>

- ≻ температура синтеза <800 °С
- равномерное заполнение пор опала
- варьирование степени заполнения пор
- «мягкое» инвертирование

loffe Physical-Pump-probe experiment Technical Institute **Delay line** Specular reflection Probe Pump Diffraction Sample

Фотоиндуцированное фемтосекундное Ime impeknice в опал-Si умеренная мощность возбуждения

Мощность накачки: 0.7 Дж/м² λ_{ритр} = λ_{ргоbe} =800 нм •Изменение интенсивности дифракционного сигнала в 10 раз больше, чем зеркального •Величина ⊿*R*/*R*~1%

•Время переключения короче

Phys. Rev. Lett. (2003)

Теория Друде

$$\Delta \varepsilon_{Si}' = \frac{-Ne^2}{m^* \varepsilon_0 \left(\omega^2 + \tau_d^{-2}\right)}$$
$$\Delta \varepsilon_{Si}'' = \frac{-\Delta \varepsilon_{Si}}{\omega \tau_d}$$

$$\Delta \varepsilon_{Si} = (-6.2 + 5.3i) \times 10^{-3}$$
$$\frac{\Delta \varepsilon'_{Si}}{\varepsilon'_{Si}} \approx 5 \times 10^{-4} \qquad \frac{\Delta \varepsilon''_{Si}}{\varepsilon''_{Si}} \approx 1.2 \times 10^{-2}$$

Эволюция спектра брэгговского отражения во времени при <u>высокой</u> мощности лазерного импульса

 $\Delta R/R$

0.00

J.Non.-Cryst. Sol. (2004), J.Lumin. (2004)

Фотоиндуцированное поглощение подавляет конструктивную интерференцию в ФК опал-Si

Интенсивность накачки: 50 Дж/м² $λ_{pump}$ = 800 нм $λ_{probe}$ = 770 нм

Интенсивность брэгговского отражения уменьшается

Рентгеновская дифракция

Изготовление объемных нанокомпозитов опал-VO₂

Методика заполнения пор опал-VO₂ (a) и объемного VO₂ (b) опала диоксидом ванадия V₂O₅ by chemical (a) Reducing of V₂O₅ bath deposition (CBD) Intensity (a.u.) heater silica tube H, T=550°C (b) opal with V₂O₅ 013, 130 $\overline{1}02$ $\overline{2}02$ <u>1</u>11 200 bare opal

20

30

40

50

20 (deg.)

60

70

Appl. Phys. Lett. (2001)

Структурное совершенство и фазовый состав *пленок* опал-VO₂

СЭМ

00000

00000

300nm

1 0 0

20 kV

20 kU

Спектры рамановского рассеяния и рентгеновской дифракции

Спектры брэгговского отражения

Управляемый фазовым передом инвертированный опал-VO₂ фотонный кристалл

Обратимый процесс

SEM image of the VO₂ photonic crystal (inverted opal-VO₂ composite)

Experimental reflectance spectra from the (111) surface of the VO₂ photonic crystal (inverted opal-VO₂ composite) 0,6 0,5 T=15C T=87C Reflectance ε'_{ν0,}=7.5 ε'_=1.0 ε''=0.48 0,4 0,3 0.2 .=1.0 0,1 450 500 550 600 650 700 750 Wavelength, nm

Thermal hysteresis loop of the photonic band gap position

Переключение брэгговского отражения за счет фотоиндуцированного фазового перехода в фотонных кристаллах опал-VO₂

loffe

Physical-Technical

Institute

Линейные спектры отражения

Сверхбыстрое спектрально-временное изменение интенсивности брэгговского отражения (pump-probe) (2002); ФТТ (2003);

Appl.Phys.Lett. (2001,2005); ΦΤΠ (2002); ΦΤΤ (2003); Phys.E (2003); Phys.Rev.B (2007)

Фотоиндуцированное фемтосекундное переключение в опал-VO₂

<u>⊿E≈25 meV</u>

Зависимость вещественной и мнимой части усредненной диэлектрической проницаемости пор нанокомпозита опал-VO2 на длине волны 1.5 мкм в зависимости от фактора заполнения пор

Вещественная часть диэлектрической проницаемости диоксида ванадия

10^{0.0} 0.2 0.4 1.0 0.6 0.8 λ =1540 nm Semiconductor phase عوم Pore Bore Re _{spore}, λ=1540 nm (b) Re ^E pore, Im ^E pore Metal phase -2 0.0 0.2 0.4 0.6 0.8 1.0 Fill factor. f

Перестройка фотонной запрещенной зоны в опал-VO2

Visible

Near infrared

Фотонно-кристаллическая гетероструктура

Нормализованные спектры отражения: 1 – незаполненный опал, 2 –

опал- VO_2 композит, протравленный в 0.3М HF в течение 1час,

3-6 – фотонно-кристаллическая гетероструктура до (3,5) и после (4,6) фазового перехода в VO₂ при разных углах падения: 3,4 - 10°; 5,6 - 40°.

Гиперзвуковая модуляция фотонной запрещенной зоны

Импульс Ті-сапфирового лазера индуцирует нагрев металлической пленки. Пленка быстро расширяется вследствие термоупругого эффекта и пикосекундный импульс деформации (упругий волновой пакет) инжектируется в опаловую пленку.

Возникают когерентные (за счет упругой связи) колебания опаловых сфер

 --- модуляция периода фотонного кристалла

 --- модуляция спектра брэгговского отражения Гиперзвуковая модуляция света опаловыми <u>фотонно-фононными</u>

Неоднородность спекания шаров нарушает когерентность фононов и тем самым ограничивает глубину проникновения гиперзвукового пакета.

Phys. Rev. Lett. (2008)

Эволюция сигнала отражения во времени

Фурье-преобразование сигнала отражения

В измеренном спектре регистрируются колебания с частотами меньше низшей квадрупольной лэмбовской моды!

Сопоставление экспериментальных данных со спектром колебательных мод опалового фононного кристалла

Периодическое изменение ^{<u>r₀-1</u> акустических параметров}

loffe

Physical-

Technical

Institute

приводит к возникновению полной фононной запрещенной зоны

Phys. Rev. Lett. (2008) Фильтрация упругих волн гиперзвуковым кристаллом на основе опалов – основа создания управляемых фононных интегральных схем

Nano Letters (2010)

Зарегистрирована долгоживущая упругая мода с частотой 7.5 ГГц. Время жизни этой генерируемой на поверхности когерентной моды (порядка 1 нс) существенно превышает время затухания (порядка 100 пс) мод с частотами более 10 ГГц. Сопоставление с теорией позволило сделать вывод, что долгоживущая мода связана с локализованными на поверхности колебаниями с частотой в области полной фононной зоны.

Фотонно-фононные кристаллы на основе синтетических опалов

- Полная фотонная и фононная зоны
- Акусто-оптические приборы в ГГц ТГц диапазоне
- Термоизоляторы (управление тепловым транспортом, увеличение эффективности термоэлектрических преобразователей)
- Управление в полупроводниковых фотоннофононных кристаллах каналами релаксации электронов, обусловленной электронфононным взаимодействием (новое поколение эффективных излучательных полупроводниковых наноструктур !!!)

- Представлены результаты по методам получения, а также исследованию структурных и оптических свойств трехмерных фотонных кристаллов на основе синтетических опалов
- Основное внимание уделено излучающим и управляемым фотонным кристаллам, в которых поры опаловой матрицы были заполнены Er, GaN, фосфорами, Si, VO₂
- Продемонстрированы результаты по управлению световыми потоками, включая эксперименты по сверхбыстрой фемтосекундной перестройки отражательных свойств нанокомпозитов опал-полупроводник (Si, VO₂)
- Показано, что опалы обладают свойствами трехмерных фотонно-фононных кристаллов. Это открывает пути применения синтетических опалов в новом поколении акустооптических, термоэлектрических и светоизлучающих устройств

СПАСИБО ЗА ВНИМАНИЕ !!!