

European Synchrotron Radiation Facility

Introduction Technical issues

- polled examples
- maginetice - prussian b - BMT

Conclusions

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

Starting point: diffraction

infinite lattice with basis vectors q_1, q_2, q_3

structure factor

FT of crystal shape

Starting point: diffraction

Infinite bitice with basis vectors q₁, q₂, q₃

large crystal > SHAPPO

FT(crystal) becomes a set of nothing between Bragg refle

structure factor

 $F(\mathbf{Q}) = \sum_{d} f_{d}(\mathbf{Q}) \exp(2\pi \mathbf{Q}\mathbf{r}_{d})$

structure factor including thermal blurring $F(\mathbf{Q}) = \sum_{d} f_{d}(\mathbf{Q}) \exp(2\pi \mathbf{Q} \mathbf{r}_{d}) \exp(-W_{d}(\mathbf{Q}))$

is with different prefactors

Starting point: diffraction

raw image taken with PILATUS 6M detector X06SA SLS

European Synchrotron Radiation Facility

S. M. E

Step forward: thermal vibrations

raw image taken with PILATUS 6M detector X06SA SLS

European Synchrotron Radiation Facility

Scattering on thermal vibrations (3D)

 $\mathbf{D}(\mathbf{q})\hat{\boldsymbol{\sigma}}^{j}(\mathbf{q}) = \hat{\boldsymbol{\sigma}}^{j}(\mathbf{q})\omega_{j}^{2}$ cynamical equation decribes the modes allowed to propagate block (incurrency, $\hat{\boldsymbol{\sigma}}^{j}(\mathbf{q})$ mode eigenvector

 $\mathbf{Q}) \approx \sum_{j=1}^{N} \frac{1}{\omega_j} \operatorname{coth} \left(\frac{h\omega_j}{2k_1} \right) \frac{1}{\omega_j} \int_{\mathcal{A}} (Q) \exp(-W_1(\mathbf{Q}) + i\mathbf{Q}) \frac{1}{\omega_j} \operatorname{coth} \left(\frac{h\sqrt{D(\mathbf{q})}}{2k_1} \right) \frac{1}{\omega_j} \int_{\mathcal{A}} (Q) \exp(-W_1(\mathbf{Q}) + i\mathbf{Q}) \frac{1}{\omega_j} \int_{\mathcal{A}} (Q) \frac{1}{\omega_j} \int$

 $Z_{\alpha\alpha}(\mathbf{Q}) = f_{[\alpha/3]}(\mathbf{Q}) \exp(-W_{[\alpha/3]}(\mathbf{Q}) + i\mathbf{Q} \cdot \mathbf{r}_{[\alpha/3]}) M_{[\alpha/3]}^{-1/2}$

A. Bosak, D. Chernyshov, Acta Cryst. A 64, 598 (2008)

European Synchrotron Radiation Facility

 $\langle 0 \rangle d \langle 0 \rangle$. The

Thermal diffuse scattering in silicon

raw image taken with PILATUS 6M detector X06SA SLS new age with pixel detectors? FULL recipiocal space can be explored in few minutes

European Synchrotron Radiation Facility

Step forward: chemical disorder + distortions

structure factor

elastic dipole force tensor

European Synchrotron Radiation Facility

Huang scattering

European Synchrotron Radiation Facility

Huang scattering

C*

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

Reciprocal space exploration

European Synchrotron Radiation Facility

2D patterns \rightarrow 3D

Energy-resolved scattering

The instrument INELAX at the HARWI wiggler line of HASYLAB

 $E_i = 18 \text{ keV}$ $k_i = 91.2 \text{ nm}^{-1}$ $\Delta E/E \le 1 \times 10^{-7}$ small beams: 100 µm or smaller

IXS kinematics

European Synchrotron Radiation Facility

Experimental IXS setup

ESRF: ID16 and ID28

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

Departure point: boson peak

Lemma: boson peak in glass originates from TA singularity of "parent"

European Synchrotron Radiation Facility

X-VDOS: incoherent approximation with IXS

European Synchrotron Radiation Facility

Questions

to which to corresponds the low-cherch (related to bosen peak problem)? are the "soft" directio

European Synchrotron Radiation Facility

Available lattice dynamics data

- Raman data (+ temperature dependence)
 - BLS datat (Temperature dependence) Pr
 - ING stople cruetal data (FK+M, FIM, THAR
 - INS bowcer, data (low energy, incoherent approximatio
 - IXS single crystal data (i
 - diffuse scattering data for selected directions (inclastic nature

- to which Q corresponds the low-energy peak in VDOS (related to boson peak problem)?
 - are the "soft" directions always high-symmetry directions?

Where does 1st VDOS peak come from?

no high symmetry direction is responsible for the 1st VDOS peak

European Synchrotron Radiation Facility

Preparing the roadmaps: TDS

quartz single crystal 1x1x10 mm³

CABL at EGRIDMOIA beamline. CREAKEA beamline PILATUS INFIGETECTO

wavelength ~0.7 A

angular step QL deg 3600 images, 0.25 s exposure primary treatment with GysAlis Oxford Diffraction package

3D reconstruction with original software, visualization with USCF Chimera, rendering with Pox-Ray

Room temperature TDS isosurface

European Synchrotron Radiation Facility

XLIV школа ПИЯФ РАН по Физике Конденсированного Состояния 2010

TDS distribution in high-symmetry planes

European Synchrotron Radiation Facility

TDS distribution in high-symmetry planes

European Synchrotron Radiation Facility

Preparing the roadmaps: LD calculations

ab initio calculations

CASTER prickage Chour the dense mesh (16000 points in the Irreducible BZ part).

peak in VDOS => saddle point on the dispersion sufface [Van Hove, 1952]

 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ – eigenvalues of S saddlepoint: $\varepsilon_1, \varepsilon_2 > 0, \varepsilon_3 < 0$ or $\varepsilon_1, \varepsilon_2 < 0, \varepsilon_3 > 0$

Preparing the roadmaps: LD calculations

reasonable agreement – so the calculation can be helpful?

X-VDOS is quite close to real VDOS

European Synchrotron Radiation Facility

Exploration of suspicious points and directions

INS: M is saddle point with energy of ~8.7 meV

European Synchrotron Radiation Facility

Exploration of suspicious points and directions

INS: M is saddle point with energy of ~8.7 meV CASTEP: saddle point, slightly lower energy (~7 meV) does not fit with VDOS peak

IXS experiment

quartz single crystal 1x1x10 mm³

Exploration of suspicious points and directions

IXS: A is saddle point with energy of ~6.4 meV CASTEP: minimum, nearly flat in c*, lower energy (~5.1 meV), does not fit with VDOS peak

European Synchrotron Radiation Facility

Exploration of suspicious points and directions

IXS: A is saddle point with energy of ~6.4 meV CASTEP: minimum, nearly flat in c*, lower energy (~5.1 meV), does not fit with VDOS peak

European Synchrotron Radiation Facility

Less trivial geometry for TA phonons observation

European Synchrotron Radiation Facility

Less trivial geometry for TA phonons observation

transverse acoustic phonons can be observed in purely longitudinal geometry

European Synchrotron Radiation Facility

IXS: $(1/2 \ 0 \ 1/2)$ is minimum with energy of \sim 8.2 meV CASTEP: minimum

European Synchrotron Radiation Facility

IXS: (1/2 0 1/2) is minimum with energy of ~8.2 meV CASTEP: minimum

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

Q-search with given energy window: CASTEP

solids represent the q-volume where you have phonons with desired energy promising area around $\sim(1/4 \ 0 \ 1/2)$

European Synchrotron Radiation Facility

Q-search with given energy window: CASTEP

there is a saddle point close to $(1/4 \ 0 \ 1/2)$ with the requested energy

IXS: singularity localized

European Synchrotron Radiation Facility

The strenge TPS features are NO interestarily soft branches soft branches are not necessarily associated with visible

VDOS singufarities.

 calculations are highly desirable for the experiment plant in and data interpretation

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

Kohn anomaly in zinc

European Synchrotron Radiation Facility

Kohn anomaly in zinc

European Synchrotron Radiation Facility

Kohn surface visualization in zinc

raw image RS reconstruction with Crysalis software **PILATUS: strong suppression of fluorescence**!

European Synchrotron Radiation Facility

Kohn surface visualization in zinc

European Synchrotron Radiation Facility

... and 3D TDS representation

elastic contribution can be neglected (proven by IXS)

European Synchrotron Radiation Facility

... and 3D TDS representation

"lens" curvature => $q/2 \approx k_F \approx 1.57 \text{ Å}^{-1}$ free electrons model => $k_F \approx 1.573 \text{ Å}^{-1}$

elastic contribution can be neglected (proven by IXS)

... and 3D TDS representation

A. Bosak, M. Hoesch, M. Krisch, D. Chernyshov, P. Pattison, C. Schulze-Briese, B. Winkler, V. Milman, K. Refson, D. Antonangeli, and D. Farber, Phys. Rev. Lett. **103**, 076403 (2009)

European Synchrotron Radiation Facility

XLIV школа ПИЯФ РАН по Физике Конденсированного Состояния 2010

A. Bosak, P. Piekartz, M. Hoesch, D. Chernyshov, C. Schulze-Briese

European Synchrotron Radiation Facility

The oldest known magnetic material

European Synchrotron Radiation Facility

High-temperature phase: neutron diffuse scattering

large polarons of specific structure

all the features observed with neutrons are visible + some additional diffuse features fully disappear below the transition (except for TDS)

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

Source of diffuse scattering

Source of diffuse scattering

IXS experiment

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

IXS experiment

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

Fermi surface?

nesting of Fermi surface => discontinuity of interaction potential =>
signature in charge movement

A. Bosak, P. Piekartz, M. Hoesch, D. Chernyshov, C. Schulze-Briese, in preparation

European Synchrotron Radiation Facility

A. Bosak, D. Chernyshov, Phase Transitions (2010)

European Synchrotron Radiation Facility

Diffuse scattering in Prussian Blue analog

Crystalline, Mixed-Valence Manganese Analogue of Prussian Blue: Magnetic, Spectroscopic, X-ray and Neutron Diffraction Studies

Patrick Franz,[†] Christina Ambrus,[†] Andreas Hauser,[‡] Dmitry Chernyshov,^{†,§} Marc Hostettler,[†] Jürg Hauser,[†] Lukas Keller,[‡] Karl Krämer,[†] Helen Stoeckli-Evans,^{*} Philip Pattison,[±] Hans-Beat Bürgi,[†] and Silvio Decurtins^{†,*}

Contribution from the Departement für Chemio and Biochemie und Laboratorium für Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

J. AM. CHEM. SOC. 2004, 126, 16472-16477

Mn(II)[Mn(III)(CN)6]2/3*(6H2O)1/3*yH2O

Swiss Norwegian Beam Lines / MAR Image Plate SLS / PILATUS 6M

Figure 8. (a) Diffuse scattering of 1 obtained from a) single-crystal X-ray diffraction (H0L-layer, T = 293 K), (b) neutron powder diffraction (153 K). The gray areas in the powder diagram indicate diffuse contributions and correspond to the blurred features seen in a).

European Synchrotron Radiation Facility

Diffuse scattering in Prussian Blue analog

replacement of [Mn(CN)₆)] by [6H₂O]

Diffuse scattering in Prussian Blue analog

replacement of [Mn(CN)₆)] by [6H₂O]

European Synchrotron Radiation Facility

XLIV школа ПИЯФ РАН по Физике Конденсированного Состояния 2010

Elastic or inelastic?

diffuse scattering is essentially (quasi)elastic and related to the disorder

European Synchrotron Radiation Facility

Elastic or inelastic?

diffuse scattering is essentially (quasi)elastic and related to the disorder

European Synchrotron Radiation Facility

 $\left\langle \left| c_{\mathbf{q}} \right|^{2} \right\rangle \approx p(\mathbf{q}) \otimes \sum \sum \left\{ \delta(q_{\alpha} + 2n_{\alpha}) \cdot \left(\delta(q_{\beta} + 2n_{\beta} + 1) + \delta(q_{\gamma} + 2n_{\gamma} + 1) \right) \right\}$

three families of intersecting rods

displacements are not taken into account => perfect fit is not possible

European Synchrotron Radiation Facility

Autocorrelator

Autocorrelator

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

XLIV школа ПИЯФ РАН по Физике Конденсированного Состояния 2010

European Synchrotron Radiation Facility

...and back to the reciprocal space

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

Relaxor-related system

interesting diffuse scattering!

first observed at SNBL@ESRF circa 2005 S. Gvasaliya, S. Lushnikov, D. Chernyshov

European Synchrotron Radiation Facility

X-ray diffuse scattering

European Synchrotron Radiation Facility

X-ray diffuse scattering

European Synchrotron Radiation Facility

Simple parametrization

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

...and back to the reciprocal space

European Synchrotron Radiation Facility

Displacements

deformed cubes characteristic intensity distribution close to Bragg reflections => Mg and Ta are displaced first hints: Ta-Ta distance is larger than Mg-Mg

European Synchrotron Radiation Facility

It derivation for non-relaxed disordered perovskites? is calculating multi-site correlations diseful? to which physical properties we can access?

European Synchrotron Radiation Facility

European Synchrotron Radiation Facility

Acknowledgments

European Synchrotron Radiation Facility